
Matrix Multiplication: A Case Study of
Enhanced Data Cache Utilization

Nadav Eiron

Computer Science Department, Technion

and

Michael Rodeh and Iris Steinwarts

IBM Haifa Research Lab

Modern machines present two challenges to algorithm engineers and compiler writers: They have
superscalar, super-pipelined structure, and they have elaborate memory subsystems specifically
designed to reduce latency and increase bandwidth. Matrix multiplication is a classical benchmark
for experimenting with techniques used to exploit machine architecture and to overcome the
limitations of contemporary memory subsystems.

This research aims at advancing the state of the art of algorithm engineering by balancing
instruction level parallelism, two levels of data tiling, copying to provably avoid any cache conflicts,
and prefetching in parallel to computational operations, in order to fully exploit the memory
bandwidth. Measurements on IBM’s RS/6000 43P workstation show that the resultant matrix
multiplication algorithm outperforms IBM’s ESSL by 6.8-31.8%, is less sensitive to the size of the
input data, and scales better.

In this paper we introduce a cache aware algorithm for matrix multiplication. We also suggest
generic guidelines that may be applied to compute intensive algorithm to efficiently utilize the
data cache. We believe that some of our concepts may be embodied in compilers.

Categories and Subject Descriptors: Don’t [know]: what to put

General Terms: Here too

Additional Key Words and Phrases: Cache, Prefetching, Blocking, Matrix Multiplication, BLAS

A preliminary version of this paper appeared in [Eiron et al. 1998]. Name: Nadav Eiron
Affiliation: Computer Science Department, Technion — Israel Institute of Technology
Address: Computer Science Department, Technion, Haifa, 32000, Israel.
nadav@cs.technion.ac.il

Name: Michael Rodeh
Affiliation: IBM Haifa Research Lab
Address: IBM Haifa Research Lab, Haifa, 31905, Israel. rodeh@il.ibm.com

Name: Iris Steinwarts
Affiliation: IBM Haifa Research Lab
Address: IBM Haifa Research Lab, Haifa, 31905, Israel. iriss@il.ibm.com

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.



2 · N. Eiron, I. Steinwarts, and M. Rodeh

1. INTRODUCTION

As the gap between CPU and memory performance continues to grow, so does the
importance of effective utilization of the memory hierarchy. This is especially evi-
dent in compute intensive algorithms that use large data sets, such as most numeric
problems. The problem of dense matrix multiplication is a classical benchmark for
demonstrating the effectiveness of techniques that aim at improving memory uti-
lization. A straightforward matrix multiplication algorithm performs O(N3) scalar
operations on O(N2) data items. Moreover, this ratio can be preserved when per-
forming the multiplication operation as a sequence of operations on sub-matrices.
This feature of the problem, which is shared by other numeric problems, allows
efficient utilization of the memory subsystem.

The efficient implementation of compute-intensive algorithms that use large data
sets present a unique engineering challenge. To allow the implementation to exploit
the full potential of the program’s inherent instruction level parallelism, the adverse
effects of the processor-memory performance gap should be minimized. A well
engineered compute-intensive algorithm should:

—Manage with small caches;
—Avoid cache conflicts;

—Hide memory latencies associated with “cold-start” cache misses.

A broad set of techniques has been suggested to adapt numeric algorithms to
the peculiarities of contemporary memory subsystems. These techniques include
software pipelining [Lam 1988], blocking (tiling) [Callahan et al. 1991a] and data
copying [Callahan et al. 1991a; Temam et al. 1993]. Each of these techniques was
designed as a solution to one of the first two engineering challenges presented above.
The relatively new method of selective software prefetching [Callahan et al. 1991b;
Mowry 1994; Mowry et al. 1992] aims at the third challenge. Software prefetching
attempts to hide memory latencies by initiating a prefetch instruction sufficiently
early, before the data item is used. However, the implementation should be carefully
designed to avoid cache pollution by the prefetched data (see [Lee et al. 1994]). If
the prefetch instruction is non-blocking, the memory access will be executed in
parallel with the computations carried out by the CPU.

Basic linear algebra operations on matrices and vectors serve as building blocks
in many algorithms and software packages. The importance of efficient implemen-
tation of such operations has led to the development of the BLAS (Basic Linear
Algebra Subroutines) library standard. The standard is divided into three lev-
els: BLAS-1 deals with vector/vector operations, BLAS-2 includes matrix/vector
operations, and BLAS-3 includes matrix/matrix operations.

Previous attempts to improve the performance of BLAS-2 routines are reported
in [Agarwal et al. 1994]. Similar work on BLAS-3 routines is presented in [Navarro
et al. 1992]. Both these efforts employ a variety of techniques in order to overcome
the memory hierarchy limitations. However, these efforts fail to meet all three
challenges simultaneously.

We propose a new cache-aware O(N3) matrix multiplication algorithm which
builds upon known techniques to meet all of the three engineering challenges. Our
algorithm is based on two observations: (i) The ratio between the number of scalar



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 3

operations and the data size remains high, even when the problem is divided into a
sequence of sub-matrix multiplications. (ii) The system bus is a valuable hardware
resource that should be taken into account in the algorithm design.

Our algorithm uses a blocking scheme that divides the matrices into relatively
small non-square tiles, and treats the matrix multiplication operation as a series
of tile multiplication phases. The data required for each phase is designed to com-
pletely fit in the cache. In addition, our scheme maintains a high ratio of scalar
operations to the number of data items for each phase.

To maintain conflict-free mapping of the data regardless of the associativity level
of the cache, the algorithm restructures the matrices into an array of interleaved
tiles. The copying operation can be carried out during the multiplication process,
using only a small copying buffer.

To cope with memory latency, all data required during phase i must be prefetched
into the data cache during phase i−1. This is done simultaneously with the actual
computation. The two activities must be well balanced. In particular, the smaller
the latency and the higher the memory bandwidth — the smaller the portion of
the cache needed. The order and timing of the prefetch instructions is designed to
make sure that relevant data is not flushed from the cache. When doing so, the
architectural features of the cache must be taken into account.

We prove that our cache-aware O(N3) matrix multiplication algorithm does not
suffer memory latency when running on an architecture that fits the assumptions
of our machine model. The performance of our algorithm is not influenced by the
size or layout of the input matrices. Assuming that the data set fits in the main
memory of the machine, our algorithm maintains its behavior regardless of the data
set size. In addition, unlike traditional blocking based algorithms, our algorithm
shows little sensitivity to small changes in the input size.

We implemented our algorithm on an IBM RS/6000 PowerPC 604 based worksta-
tion. Our implementation allows instruction level parallelism by using tiling at the
register level, combined with loop unrolling and software pipelining. The scheduling
of machine instructions builds on the fact that in our algorithm, memory access op-
erations are always serviced by the cache. Our implementation outperforms IBM’s
BLAS-3 matrix multiplication function by roughly 21.5%, on the average, for double
precision data. For some values of N , our implementation runs 31.8% faster.

We go further to generalize the techniques used in our cache aware matrix mul-
tiplication algorithm to a set of guidelines that may be applied to a wide variety
of compute intensive numeric algorithms. Again, we prove that an algorithm that
complies with our guidelines will suffer no memory latencies when running on a
platform that fits our abstract machine model.

The following section provides general background on the architecture of memory
hierarchies in modern computers. In Section 3 we describe the assumptions that
we make on the machine architecture. In Section 4 we outline our techniques
and their application for matrix multiplication, while in Section 5 we present our
implementation for the IBM RS/6000 platform. Section 6 presents the generic
guidelines developed as a generalization of our matrix multiplication algorithm.



4 · N. Eiron, I. Steinwarts, and M. Rodeh

2. MEMORY HIERARCHY ARCHITECTURE

Abstraction is a fundamental concept in software design: By presenting to the
developer an abstract model of computation, the developer can concentrate on
the conceptual aspect of the problem to be solved rather than spending significant
effort on the peculiarities of a specific machine. The concept of memory hierarchy is
aimed at imitating a flat, uniformly accessible, large memory, by taking advantage
of locality of reference that most programs exhibit. Since fast memory is expensive,
a memory hierarchy is organized in levels – each smaller, faster and more expensive
than the level below it. The goal is to provide a memory system which costs almost
as little as the lowest and cheapest level of the hierarchy and is as fast as the
highest level of the hierarchy. The data stored in the different levels of the memory
hierarchy usually contain one another.

2.1 Cache

Cache is the name generally given to the top level of the memory hierarchy en-
countered once the address leaves the CPU. While in the 80s, microprocessors were
often designed without caches, today they often come with two or three levels of
caches. The level 1 (L1) cache is the smallest, fastest and most expensive memory.
It is usually co-located with the processor to minimize its access time.

A cache block is the minimum unit of information that can be present in the cache
(hit in the cache) or not (miss in the cache). The cache thus holds a certain amount
of cache lines, each the size of a block, that may hold the data (the line represents
the frame, while the block is the data inside the frame). Consider a cache that
contains m lines. A K-way set associative cache is organized into m/K sets where
each set contains K lines. The cache may be viewed as made up of K ways, each
containing one line from every set. The level of the cache associativity determines
the mapping of a lower-level memory block into the cache. A block is first mapped
into a cache set, and then it can be placed in any line within that set. A direct
mapped cache is a cache whose sets contain only one line. A fully associative cache
is a cache that contains only one set.

log(m/K) bits

Tag Set Index
Offset
Block

l bits

Fig. 1. Mapping into a set associative cache

Figure 1 depicts the mapping of an address into an m-line, K-way set associative
cache, with line size 2l. The index part of the address is used to select one of the
m/K cache sets. The offset part is the address of the desired data within the block.
The reminder of the address, i.e. the tag, is used to mark the cache line and, by
this, to identify the specific block within the line from all other K − 1 blocks that
reside in the same set.

Cache misses are usually classified into three categories, called the three C’s:



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 5

Cold start misses. Also called compulsory misses. A miss that is caused by the
first access to a block, which, naturally, is not yet resident in the cache.

Capacity misses. If the cache is not large enough to hold all of the blocks needed
during the execution of a program, capacity misses would occur due to blocks that
are discarded prematurely.

Conflict misses. Also called collision or interference misses. A type of miss that,
by definition, does not occur in a fully-associative cache. A conflict miss occurs on
a new access to a block that was resident in the cache but was previously flushed
out of the cache even though other sets of the cache contained stale data. This
kind of miss occurs when too many blocks are mapped to the same cache set.

When a cache miss occurs, the cache controller must select a block (one out of the
K blocks in the set) to be replaced by the new accessed data. The most common
replacement policies are LRU (Least Recently Used) and Random. LRU records
the accesses being made to the blocks in the set. The block replaced is the one that
has been unused for the longest time.

When modifying a resident cache line, the write-policy determines how data up-
dates are reflected in the lower-level of the memory hierarchy. There are two com-
mon write policies:

Write through. The information is written both to the block in the cache and to
the block in the lower-level memory. The advantages of the write through policy
is that lower levels of the hierarchy are always consistent with the cache, and that
read misses never result in writes to the lower-level.

Write back. Also called copy back. Updated information is kept in the cache.
The modified cache block is written to the main memory only when it is replaced.
The main advantage of the write-back policy is that multiple writes within a block
require only one write to the lower-level memory, thus requiring a smaller number
of memory read/write transactions and a smaller memory bandwidth.

Since data is accessed also on write, there are also two common options on a
write miss:

Write allocate. Also called fetch on write. The block is loaded on a write miss,
followed by the write hit actions, as dictated by the write policy.

No-write allocate. The block is only modified in the lower level and not loaded
into the cache.

For a more complete explanation of cache design, refer to [Hennessy and Patter-
son 1996, Chapter 5].

2.2 Main Memory

In the memory hierarchy, main memory is the next level down the hierarchy, below
the cache levels. There are two common measures to the main memory perfor-
mance, namely memory latency and memory bandwidth. Memory latency is the
time duration which starts when a read operation is issued and ends when the de-
sired data arrives. Memory bandwidth is the maximum amount of data that may
be read from the memory in one unit of time.



6 · N. Eiron, I. Steinwarts, and M. Rodeh

2.3 Paged Virtual Memory

Before the introduction of virtual memory in the 60s, programmers had to make
sure that their programs fit into main memory. Loading and unloading of software
modules was done under user program control. Virtual memory subsystems were
invented to relieve programmers of this burden. Virtual memories automatically
manage two levels of the memory hierarchy: The main memory and the secondary
storage [Hennessy and Patterson 1996].

Several general memory hierarchy terms mentioned in Subsection 2.1 also apply
to virtual memory. The term page is analogue to a block, the minimum unit of
information that is managed by the virtual memory subsystem; the notation of a
frame is analogue to that of a cache line; page fault is the term that substitutes cache
miss. However, in spite of the common terminology, virtual memory parameters are
radically different than cache parameters. While a typical value for one L1 cache
block ranges from 16 to 128 bytes, the typical value of a virtual memory page size
ranges from 1KB to 64KB. While the cache hit time is 1–2 cycles, the memory
latency is 40–100 clock cycles. Also, while cache miss penalty is 8–100 clock cycles,
a page fault costs 700,000–6,000,000 clock cycles [Hennessy and Patterson 1996,
Section 5.7].

When using cache terminology to describe the mapping of virtual to physical
memory, we can refer to the main memory as fully associative, since it may be
viewed as a single set of frames. A page can be placed anywhere within the set,
i.e. in any frame of the main memory.

With virtual memory, the CPU produces virtual addresses. The length of a
virtual address determines the size of the virtual memory. Virtual addresses are
translated by a combination of hardware and software, to physical addresses, which
are used to access main memory. This process is called address translation.

Physical Address

Virtual Page Number (VPN) Page Offset

Page
Table

Main
Memory

Virtual Address

Fig. 2. Translation of a virtual address into a physical address



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 7

Figure 2 demonstrates translation from a virtual address into a physical address.
The Virtual Page Number (VPN) is used as an index into a data structure called
the Page Table. The Page Table Entry (PTE) contains the physical address of the
block’s frame (or an indication that the page is not resident in the main memory).
Physical addresses are obtained by concatenating the physical address of the frame
in which the page reside, with the page offset. The cost of the translation process
is not negligible: Page tables are usually quite large and do not fit into main
memory. As a result, they usually have a recursive structure and are paged in
and out. Therefore, the translation process requires at least two memory accesses,
one memory access to retrieve the page frame address, and an additional access to
retrieve the data.

As opposed to the cache replacement policy which is hardware controlled, the
virtual memory replacement policy is primarily controlled by the operating system.
In addition, a page fault preempts the current running process and causes a context
switch. As will be further explained below, context switches either cause a com-
plete cache flush (in case the cache is virtually indexed), or implicitly cause cache
contamination by other processes.

2.3.1 Virtually Versus Physically Indexed Caches. Virtual addresses, produced
by the processor, need to be mapped to physical addresses in order to retrieve
information from main memory. A cache that uses virtual addresses for its mapping
is called a virtually-indexed cache, as opposed to a physically-indexed cache that
uses physical addresses. The advantage of virtually-indexed caches is that the
cache access time is shortened since, on a cache hit, which is the common case,
the virtual-to-physical translation process is skipped (since the memory reference
is serviced by the cache). However, a virtually-indexed cache must be flushed on
every context-switch.

To shorten the translation process, regardless of the cache implementations, a
special translation cache, called a Translation Look-aside Buffer (TLB) is used. A
TLB entry is like a cache entry where the data portion holds a PTE, and the tag
holds a VPN.

PFN (for physical indexed cache)

Set IndexTag

Page Offset
VPN (for virtually indexed cache)

Block
Offset

Fig. 3. Virtual vs. physical address mapping, when page size ≥ way size

Figure 3 depicts the use of an address to select a cache line, where the page size
is greater, or equal, to the way size. As can be clearly seen from the figure, the
sequence of bits that are used to select the cache set (the index) plus the sequence
of bits that are use to select the specific data within the block (the block offset),
are a suffix of the page offset. The remainder of the address is only used as the
cache tag. If the address is virtual, then the remainder is the VPN + the prefix
of the page offset, otherwise the address is physical, and then the reminder is the
PFN + the prefix of the page offset. Note that with a page size that is greater or



8 · N. Eiron, I. Steinwarts, and M. Rodeh

equal to the cache way size, mapping of a virtual address and physical address is
the same.

3. THE MACHINE MODEL

When optimizing an algorithm, it is important to properly choose a simple, but
sufficiently accurate machine model. The objective is then to define an abstract
model such that an algorithm optimized for it will perform well in practice.

In our case, we deliberately decide to ignore the effects of the virtual memory
subsystem. Specifically, we ignore the paging mechanism, the use of virtual versus
physical addresses for cache indexing, and the use of a TLB to shorten the address
translation process. As a consequence, the negative effects of page faults and TLB
misses are not taken into account. Furthermore, we assume a virtually-indexed data
cache. This assumption is required to allow the algorithm to use virtual addresses
when it restructures data in a manner that will assure conflict-free mapping into
the cache.

While our machine model may seem very simplistic as compared to contempo-
rary architectures, it is accurate enough for our purposes. Even though the target
machine we have for our implementation uses demand-paged virtual memory and
more than one level of physically indexed caches, our implementation, which is
optimized for the abstract machine, presents better performance than the current
state of the art implementations for the architecture in question.

Other assumptions that we make regarding the target machine are:1

—The memory subsystem includes at least one level of data cache. Our optimiza-
tion techniques target only the first level (L1) data cache. We assume that slower
caches do not degrade the performance of the L1 cache. Specifically, we require
that they do not affect the L1 replacement policy2.

—The processor supports a non-blocking cache fetch instruction. This may be a
specialized prefetch instruction, or a simple non-blocking load instruction [Farkas
and Jouppi 1994].

—The L1 data cache write policy is copy-back.
—The L1 data cache replacement policy is Least Recently Used (LRU).
—The CPU follows a load/store (register-register) architecture.

We use the following parameters in the description of our algorithm: The L1 data
cache holds C bytes arranged in lines of size L. The cache is K-way set associative.
We denote by M the number of machine cycles required to fetch a complete cache
line from memory (contemporary machines have 20 ≤ M ≤ 100).

4. THE ALGORITHM

Our algorithm is designed to carry out matrix multiplication of the form

C = A · B
1The last three assumptions were chosen to reflect common modern RISC architectures. Conceiv-
ably, different assumptions regarding these issues could have been used instead in the design.
2This assumption is reasonable, since in most architectures, slower caches are both larger and
have a higher degree of associativity than the L1 cache. For example, see [Digital Equipment
Corp. 1998].



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 9

i

k

Matrix CMatrix BMatrix A

Ci,k

P1

P2 P3 P3

P2
P1

Fig. 4. Tile multiplication

where A, B, and C are real matrices of sizes N1×N2, N2×N3 and N1×N3, respec-
tively. We denote by I the matrices’ element size, in bytes. We make no assumption
regarding the layout, or relative location, of the input matrices in memory. In the
following subsections we outline the algorithm, describing the use of each of the
optimization techniques and the way in which the algorithm combines them. We
end up with a matrix multiplication algorithm, that by construction, does not suffer
memory latency when running on an architecture that fits the assumptions of our
machine model.

4.1 Tolerating Capacity and Cold Start Misses

In this subsection we assume that the cache is fully associative. We postpone the
discussion on eliminating cache conflicts and pollution to the following subsections.

The algorithm partitions the input matrices into tiles (see Figure 4). The matrix
C is divided into tiles of size P1×P3. Each one of these tiles is generated by a sum
of products of a horizontal stripe of A-tiles and a vertical stripe of B-tiles. The
matrix A is thus divided into tiles of size P1 × P2 while B is divided3 into tiles of
size P2 × P3. Denoting by Mi,j the (i, j)th tile of the matrix M, we have:

Ci,k =
N2/P2−1∑

j=0

Ai,j · Bj,k

Since we have N1N3/(P1P3) C-tiles to compute and since the computation for
each tile requires N2/P2 tile multiplications, we have a total of (N1N2N3)/(P1P2P3)
tile multiplication phases. In each phase we multiply an A-tile of size P1 × P2, by
a B-tile of size P2 × P3, updating a C-tile of size P1 × P3, using P1P2P3 scalar
multiplications and P1P2P3 scalar additions. The number of data items accessed
in each phase is P1P2 + P2P3 + P1P3.

In order to achieve optimal performance, all data used in a specific phase must
be present in the data cache at the beginning of the phase. If this condition is

3Naturally, this implies that P1, P2 and P3 must all divide the respective dimension, Ni. Padding
of the matrices may be used to meet this requirement.



10 · N. Eiron, I. Steinwarts, and M. Rodeh

for (i = 0 ; i < N1/P1 ; i++)

for (j = 0 ; j < N3/P3 ; j++)

for (k = 0 ; k < N2/P2 ; k++) {
Ci,j = Ci,j + Ai,k · Bk,j;

}

Fig. 5. The algorithm’s outer loops.

indeed met, the system bus remains unused by the tile multiplication code and can
instead be used to bring the data required for the next phase into the cache. Let
W denote the number of machine cycles it takes to multiply an A-tile by a B-tile
and store the result in C. Then:

W = Θ(P1P2P3).

The total amount of data (in bytes) required for each phase is:

I · (P1P2 + P2P3 + P1P3).

Assuming that each prefetch instruction fills a single line of the cache, the number
of prefetch instructions we must issue is

I

L
· (P1P2 + P2P3 + P1P3).

If

M
I

L
· (P1P2 + P2P3 + 2P1P3) ≤ W (1)

then a single phase runs long enough to allow us to prefetch all the data required by
the next phase on time. Note that in Equation (1) the size of the C-tile is multiplied
by 2. This is because C-tiles are modified and therefore must be written back to
memory, occupying the system bus.

To allow for the latency-free operation of the algorithm, the cache must be large
enough to concurrently hold all the data required for a certain phase (i.e., one tile
of each matrix: A, B and C), as well as the data that will be used in the next phase.
All in all, the cache must be able to hold two tile triplets, so the total cache size
must be at least

2I · (P1P2 + P2P3 + P1P3) ≤ C. (2)

Note that Equation (2) places an upper bound on P1, P2 and P3, while the timing
considerations of Equation (1) place a lower bound on these values.

For machines with a large CPU-memory performance gap, it might happen that
Euqations (1) and (2) cannot hold simultaneously for any value of P1, P2 and P3.
However, in Equation (1) we calculated the number of prefetch instructions required
in a single phase assuming that all three tiles should be replaced. The number of
prefetch instructions required may be reduced by ordering the phases so that one of
the tiles is reused. The code in Figure 5 replaces C-tiles only once in every N2/P2

phases. The reuse of C-tiles is beneficial, since these tiles are the only ones that
are modified and therefore must be written back to memory. Using the scheme



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 11

presented in Figure 5, the number of prefetch instructions needed in a single phase
is reduced to:

I

L
· (P1P2 + P2P3 +

P1P2P3

N2
).

This means, that the condition of Equation (1) may be relaxed to:

M
I

L
· (P1P2 + P2P3 + 2

P1P2P3

N2
) ≤ W. (3)

In case this does not yield feasible values of P1, P2 and P3, the implementation’s
performance may degrade.

Note that, unlike the general case of Equation (1), the relaxed equation spaces
the prefetch instructions by a duration of time that depends on N2. As a conse-
quence, the implementer cannot assume a constant number of operations between
two prefetch instructions, making the exact timing of the prefetch instructions
harder to program.

Assuming a memory bus that does not allow for pipelined memory access or
outstanding requests, all prefetch instructions must be spaced at intervals of at least
M units of time apart, to prevent stalling the CPU. With a more advanced bus that
allows multiple outstanding memory requests, this requirement can be relaxed, as
long as the request queue never overflows. For buses that allow pipelined memory
access, a more detailed calculation of the effective value of M should be carried out.

4.2 Avoiding Cache Conflicts

Our algorithm is based on the assumption that any two triplets of tiles (one from
each matrix) that are used in two consecutive tile multiplication phases can simul-
taneously reside in the cache. So far, we have assumed full associativity of the
cache. Most practical caches have a limited degree of associativity. Restructuring
the data by copying it to properly designed locations can be used to avoid cache
conflicts. Temam, Granston and Jalby discusses in [Temam et al. 1993] the uti-
lization of copying to avoid cache conflicts. In the case of matrix multiplication,
copying is potentially beneficial, as it takes only O(N2) time while the computation
takes O(N3) time, assuming that every data element is copied only once.

When using a K-way set associative cache (K > 1, K is even4), the following
condition allows any two triplets of tiles to be mapped into the cache simultaneously:

Condition 1. Associate with each of the three matrices a multi-set of cache set
indices of size sufficient to hold one tile of that matrix. Use copying to map each
tile of a specific matrix to the multi-set of cache sets that is associated with that
matrix. The mapping is conflict-free if the multi-set union of the multi-sets for the
three matrices does not contain any index more than K/2 times.

This condition is sufficient but not necessary, since it is equivalent to having any
two triplets fit in the cache, and not just the (N1N2N3)/(P1P2P3) triplet pairs used
in matrix multiplication. Note that a scheme that complies with Condition 1 may
be easily designed to copy each data element only once.

4This assumption on K is used for simplicity. If it does not hold, use bK/2c instead of K/2 in
the discussion that follows.



12 · N. Eiron, I. Steinwarts, and M. Rodeh

When using a 2-way set associative cache, Condition 1 may be met by mapping
the tiles so that all tiles of a single matrix are mapped to the same sets in the
cache, and each cache set is mapped only once. Such a mapping may be formed
by interleaving the matrices’ tiles, so that the offset between two tiles of the same
matrix is a multiple of the way size of the cache. Since the cache is assumed to
be 2-way, we can have two tiles from each of the matrices resident in the cache
simultaneously.

For a direct mapped cache, Condition 1 cannot be satisfied. To allow conflict-free
mapping for direct mapped caches, we must use the fact that not every possible
pair of three tiles from the matrices A, B and C is used. Each matrix will have two
possible sets of cache set indices for its tiles, with half of the tiles using one set and
the other half using the second set. The tile mapping is chosen so that whenever a
tile is replaced by a tile from the same matrix, the two tiles use different sets, and
therefore, do not conflict.

To design such a mapping, we divide the cache lines into two equal-sized subsets:
a “black” subset and a “white” subset. Each of these subsets is designed to hold
one tile from each matrix. Each of the matrices will have half of its tiles mapped
to black cache sets and the other half mapped to white cache sets. For the sake of
this explanation, we assume that each dimension of the matrices is divided into an
even number of tiles (i.e., N1/P1, N2/P2 and N3/P3 are all even). The matrix A
is copied so that all even-numbered vertical stripes of tiles are mapped to the black
part of the cache and all odd-numbered vertical stripes of tiles are mapped to the
white part of the cache. The matrices B and C are copied so that all even-numbered
horizontal stripes of tiles are mapped to the black part of the cache and all odd-
numbered horizontal stripes of tiles are mapped to the white part of the cache. It
can now be easily verified, that when multiplying tiles in the order of Figure 5,
whenever a tile is replaced by a tile from the same matrix, the tile replacing it
is colored differently, and therefore the two tiles do not conflict. Note that this
method can also be implemented while copying each data element only once.

While it is possible to do all the copying operations required before engaging
in the multiplication process itself, it is also possible to do the copying on the
fly, assuming sufficient memory bandwidth is available. Consider reordering of the
outer loops to multiply a vertical stripe of A-tiles by a horizontal stripe of B-tiles
while updating all of the matrix C. This order requires a stripe from A and a
stripe for B, totaling (N1 + N3)P2 elements, to be copied while N1N3P2 arithmetic
operations are carried out, leaving enough time to do the copying on the fly. Using
copying on the fly requires an initialization stage where the first stripe of A and
the first stripe of B are copied, taking O((N1 + N3)P2) memory delays. After this
initialization, the copying operation will be carried out in parallel to the calculations
carried out by the CPU. Note that copying takes only O(N1N2 + N2N3) time. In
our sample implementations, we have chosen to copy it off-line, namely, before the
first multiplication operation takes place.

4.3 Avoiding Cache Pollution

As observed in [Lee et al. 1994; Navarro et al. 1992] care must be taken, when
performing prefetch operations, in order to assure that essential data is not flushed
out of the cache. Similarly, we have to assure that fresh prefetched data is not



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 13

flushed out before it is used for the first time. Therefore, we have to examine what
cache lines are chosen for flushing by the replacement policy when a new cache
line is brought into the cache. Since the replacement policy is applied to each set
separately, we limit our discussion to a single set.

Consider a K-way set associative cache. Recall that K/2 lines of each set are
being used by the active triplet of tiles, and the other K/2 lines are used to fetch

the next triplet before the current phase is over. Let {pj
i}

K/2−1

i=0 be the sorted
time instances in which prefetch instructions have been executed during the jth
phase, {f j

i }
K/2−1

i=0 be the sorted time instances in which the first access to each line

holding data for the jth phase has been executed, and {lji }
K/2−1

i=0 be the sorted time
instances in which the last access to each such line during the jth phase took place.

Let us now describe the conditions on the access pattern that will allow pollution-
free prefetching. The first condition governs the prefetching code:

Condition 2. Every block of the tiles used in the jth phase is accessed (prefetched)
only once during phase j − 1.

Assuming that the above condition holds, the following condition necessary and
sufficient for pollution-free prefetching:

Condition 3. For every 0 ≤ i ≤ K/2 − 1 and every phase j, denote by r the
smallest index for which f j

r > pj
i and by s the smallest index for which it holds

that pj−1
s > lj−1

i . If no such r exists, the prefetch instruction pj
i is pollution-free.

Otherwise, denote by F the cache lines accessed by {f j
k}

r−1

k=0
and by P the cache lines

accessed by {pj−1
k }s−1

k=0
. The prefetch instruction pj

i is pollution-free iff P ⊆ F .

Theorem 1. When both Condition 2 and Condition 3 hold, each prefetch will
replace stale data in the cache.

Proof. Examine the state of the cache set when the prefetch at time pj
i is

executed. If r, as defined in Condition 3, does not exist, then all first accesses to
data in the jth phase occurred before pj

i . Therefore, all cache lines holding data
to be used in phase j, have time stamps after the beginning of the jth phase. On
the other hand, stale data that remained from the previous phase, has time stamps
that are older than the beginning of the current phase, and will therefore be chosen
for flushing by the LRU policy.

If r exists, then only the lines in F have been accessed during the jth phase, up
to the point in time of pj

i . In such a case, the candidate to be flushed from the
cache may either be a stale data line or a line holding data for the current phase
that was not yet accessed. Note that lines of both types will have time stamps
from phase j − 1. Since in the jth phase, we already have i prefetch instructions
that are assumed to be pollution-free, i lines that contained stale data were already
removed – the lines that were marked with time stamps {lj−1

k }i−1

k=0
. Therefore, if a

line that contains stale data will be replaced by the new prefetched line, it will be
the line accessed at time lj−1

i . To assure that no line holding data for the current
phase is to be flushed from the cache, we must check that all the lines that were
prefetched during the j − 1th phase before time lj−1

i have already had their time
stamp updated in the jth phase. The set P defined in Condition 3 contains all



14 · N. Eiron, I. Steinwarts, and M. Rodeh

Accesses to same cache block

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������

���
�

�������
�

		




���
�

�
�

���
�

���
�

������������ ����

Time

Last access to a cache block

Prefetch of a cache block

First access to a cache block

39 42 45

PP j-1
1

18 27

j
1

jf
2

l j-1
1

3 6 9 12 15 21 30 33 36

Fig. 6. Determining if a prefetch instruction is pollution-free

these lines. If P ⊆ F , these lines have indeed already been accessed in the jth
phase, assuring a pollution-free prefetch at time pj

i . If, on the other hand, there is
a line in P that is not in F , then there is a line holding current data in the LRU
queue before the oldest line that contains stale data, making the prefetch at time
pj

i a polluting prefetch.

To illustrate Condition 3, consider Figure 6. In this example, we consider one
set of an 8-way set associative cache, which therefore has 8 lines. The algorithm
is blocked into phases, and each phase processes 4 lines that reside in the set we
consider. Naturally, there are 4 prefetch instructions for lines of this set in each
phase.

Figure 6 shows two phasees: the j − 1th phase (machine cycles: 0 to 23), and
the jth phase (machine cycles: 24 to 47). The horizontal axis is time. The prefetch
operations are marked by small hashed circles, and are occur every 6 machine cycles.
The last access to each line that holds data for phase j − 1 is marked by the white
circles. First accesses to lines in the jth phase are marked by the black circles.
Dashed lines join a first access to the prefetch access that brought the relevant
block into the cache. Naturaly, there are 4 last accesses and 4 first accesses.

When considering the jth phase, the lines that were prefetched during phase j−1
now become the current data set. The lines that were current in the j− 1th phase,
now hold stale data. The prefetch instructions executed during the jth phase are
said to be pollution-free if the data they replace is stale data. When a prefetch
instruction gets executed, the cache line that is flushed out is determined by the
LRU policy. The LRU queue holds the sorted time stamps for the last access to
each of the 8 lines. Let us consider the state of the LRU queue at the beginning of
the jth phase.

The LRU queue at the beginning of the jth phase contains the sorted merger
of the two series: lj−1 and pj−1. In our example, pj−1 = {3, 9, 15, 21} and lj−1 =
{1, 8, 20, 23}. The first candidate to be replaced is a stale line; it was accessed
most recently at time 1. Therefore the first prefetch of the jth phase is definitely
a pollution-free prefetch. However, the next candidate to be flushed from the



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 15

cache is a relevant line whose time-stamp is 3. Luckily, the second first-access in
the jth phase (at time 29), to the line that was prefetched at time 3, moves the
line far behind the stale lines, to the back of the LRU queue. In our example
f j = {26, 29, 34, 38}.

Consider the second prefetch instruction of the jth phase, at time pj
1 = 33,

assuming that all preceding prefetch instructions were pollution-free. To determine
if this new prefetch is pollution-free, we need to examine the LRU queue at time
33. At that point in time, one prefetch instruction has already been executed (as
i = 1). Since the preceding prefetch is assumed to be pollution-free, it flushed
the oldest stale line from the cache set. This line is the one that was accessed at
time lj−1

0 . The oldest stale data line that remains in the cache is therefore the line
accessed at time lj−1

1 . To make sure that the second prefetch of the jth phase is
pollution-free we must check that all prefetches of the j − 1th phase that occurred
before time lj−1

1 have been touched in the jth phase before time pj
1. As seen from

the figure, there is one prefetch before time lj−1
1 (as s = 1) and there are two

first accesses before time pj
1 (as r = 2). The prefetch instruction accessed the line

that makes up the set P , while the two first accesses access the lines that make up
the set F . As demonstrated by the dashed lines in the figure, these first accesses
indeed contain references to the line in P (that is, P ⊆ F ). Therefore the prefetch
at time pj

1 replaces the stale line that was last accessed at time lj−1
1 , and is thus

pollution-free.

5. IMPLEMENTATION

To experiment with our approach, we implemented our matrix multiplication algo-
rithm for both single and double precision square matrices. The target platform was
a 133MHz PowerPC 604 based IBM RS/6000 43P Model 7248 workstation. The
algorithm was implemented in C and was compiled using the IBM XL-C compiler
[Stewart 1994]. Where necessary, hand-tuning of the resulting machine code was
carried out. To gauge the performance improvements over known techniques, we
compared our results to IBM’s Engineering Scientific Subroutine Library (ESSL)
[IBM Corp. 1997], which is the state of the art implementation of BLAS provided
by IBM for this platform.

The version of ESSL we used was specificaly optimized for PowerPC 604 based
IBM RS/6000 workstations. According to Gustavson [Gustavson 1998], ESSL is
written in Fortran, with some hand-tuned assembly code5. ESSL implements
most of the known cache related optimizations, including: off-line copying, soft-
ware prefetching, and tiling at the register, L1 cache, and L2 cache levels. Hence,
ESSL may be considered as a formidable banchmark.

5.1 Platform Description

The PowerPC 604 [IBM Microelectronics and Motorola Inc. 1994] is a superscalar,
super-pipelined RISC processor. The CPU contains one floating point unit (FPU)
and one load-store unit (LSU). It has 32 architectural floating point registers and 32
architectural integer registers. The processor has a 16KB on-chip instruction cache

5ESSL also utilizes the fma instruction in its matrix multiplication functions. See Section 5.1
below for details on this machine instruction.



16 · N. Eiron, I. Steinwarts, and M. Rodeh

and a separate 16KB on-chip data cache (C = 16384). Both caches are physically
indexed, four-way set associative (K = 4), and have a line size of 32 bytes (L = 32).
The write policy for the on-chip data cache is copy-back and the replacement policy
is LRU. Access to the cache is done via non-blocking load/store instructions. Note
that the PowerPC 604 processor adheres to all of the assumptions of our machine
model, except for the use of a physically indexed L1 data cache.

In addition to the L1 cache the machine has an off-chip L2 directly mapped and
physically indexed, unified cache of size 512KB. The line size of the L2 cache is 32
bytes. The L2 cache controller implements full inclusion of both on-chip L1 caches.
Note that this L2 cache design contradicts our assumption that slower caches do
not interfere with the replacement policy of the L1 cache.

The AIX operating system uses the PowerPC 604’s MMU to implement demand
paged virtual memory. The MMU manages two separate TLBs – one for instruction
access, and the second for data access. Each TLB contains 128 entries and is two-
way set associative. The page size is 4KB, the same as the size of a way of the L1
data cache. This allows us to ignore the page-number part of the virtual address
when mapping data to the L1 cache, making the distinction between physically and
virtually indexed caches irrelevant.

To complete the picture, let us now examine the features of the PowerPC 604
instructions, which are relevant to our work. The PowerPC architecture supports
a floating point multiply-add (fma) instruction which performs two floating point
operations: a multiplication and an addition. This instruction has four register
operands and performs the following calculation: fp1 ← fp2·fp3+fp4. The pipelined
structure of the PowerPC CPU supports issuing one independent floating point in-
struction in every cycle. The usage of the fma instruction is most appropriate for
matrix multiplication, since it allows the PowerPC 604 to complete two floating
point operations in every cycle. Thus, the IBM RS/6000 43P Model 7248 may
achieve, theoreticaly, throughput of up to 2 · 133MHz = 266 MFLOPS. By imple-
menting the tile multiplication code using fma instructions that use the FPU while
loads and stores execute in parallel in the LSU, we assume that the value of W (the
amount of work for a single tile multiplication phase) is roughly equal to P1P2P3

machine cycles.
Floating point load instructions that hit in the on-chip L1 data cache usually

complete in 3 cycles. Since the L1 data cache access is pipelined, one load/store
instruction may complete in every cycle.

A load instruction that misses the L1 data cache but hits in the L2 data cache
completes in approximately 20 cycles. A load instruction that misses both caches
takes roughly 80 cycles (we therefore assume that M = 80). While the PowerPC
604 may have up to four outstanding load/store instructions, memory access is not
pipelined.

As far as prefetching is concerned, the PowerPC 604 supports a special Data
Cache Block Touch (dcbt) instruction that fetches the cache line which corresponds
to its virtual effective address (VEA) into the cache. This instruction was designed
to implement non-faulting software prefetching, as is frequently recommended for
use in compile-time algorithms [Hennessy and Patterson 1996, Chapter 5]. Heuristic
prefetching, the common approach to use prefetching, may cause faults or excep-
tions that severely degrade performance. Therefore, the common approach is to



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 17

avoid prefetching when a fault or exception would result.
While our algorithm could have used the dcbt instruction, we decided to use a

standard non-blocking register load instruction instead, for the following reasons:

(1) The dcbt instruction does not take any action if the VEA causes a TLB miss.
Had we used the dcbt instruction, we would have lost the confidence that a data
item that was prefetched was actually brought into the data cache. Moreover,
in our algorithm, most TLB misses occur while prefetching data, and not while
actually loading it for immediate use.

(2) The dcbt instruction format requires two general purpose registers as operands
to calculate the VEA of the data to fetch (dcbt rA,rB), unlike the single regis-
ter and a constant offset used by standard floating point load instructions (for
example, lfs frD, d(rA)). Therefore, dcbt requires a different way of calculat-
ing the address to be fetched, thus increasing the overhead of prefetching. In
addition, the use of dcbt increases register pressure, to which our implemen-
tation is especially sensitive, since loops are unrolled as long as registers are
available.

(3) The XL-C compiler does not provide a source language feature that triggers the
generation of dcbt instructions. Had we used it, we would have had to use as-
sembly language to program both the dcbt instruction itself and the associated
address calculations. On the other hand, C allows the use of volatile pointers
to force the compiler to generate a load instruction ahead of time (namely, a
prefetch), without using the dcbt instruction.

5.2 Implementation Details

In this section, we describe our single and double precision implementations. For
single precision data we implement in full the matrix multiplication algorithm de-
scribed in Section 4. For double precision data, the requirements from the memory
subsystem, both in terms of bandwidth and of size, are doubled. As a consequence,
we were not able to implement our algorithm in full. Instead, we present a partial
implementation that hides most, but not all, of the memory latency. However,
the two implementations are very similar in nature. In the following sections we
describe in detail the single precision implementation. For the double precision
implementation, the obstacles that prevented us from implementing the algorithm
in full are explained, as is our variant that maximizes performance under these
conditions.

As described in Section 4.1, when breaking up matrix multiplication into phases,
the algorithm designer can sequence the phases to maximize tile reuse. Since our
target platform suffers from high memory latency, we indeed took advantage of this
observation. In particular, we chose to reuse every C-tile in every N/P2 consecutive
phases before replacing it.

5.2.1 Single Precision Implementation. For the single precision implementation,
we chose the following values for the tile-size parameters: P1 = P3 = 32 and
P2 = 16.

Proposition 1. For single precision implementation on the IBM RS/6000 43P
Model 7248, the choice P1 = P3 = 32 and P2 = 16 complies with both Equations



18 · N. Eiron, I. Steinwarts, and M. Rodeh

struct Triplet {
float A tile[P1][P2];

float C half1[P1][P3/2];
float B tile[P2][P3];

float C half2[P1][P3/2];
};

Fig. 7. Conflict free mapping

(2) and (3), assuming the input matrices are at least of size 6× 6.

Proof. Each A-tile and each B-tile has 512 elements (or 2KB in size), while
each C-tile has 1024 elements (or 4KB in size). We see that a triplet has 2KB +
2KB + 4KB = 8KB. Since the cache is 16KB in size, Equation (2) is satisfied.

The total amount of work per phase is W = P1P2P3 = 32 · 16 · 32 = 16384.
Plugging in Equation (3) the values for M , P1, P2, P3, I, and L, we have:

M
I

L
· (P1P2 + P2P3 + 2

P1P2P3

N2
) = 80

4
32

(512 + 512 + 2
16384

N
) ≤ 16384 = W

This inequality holds for all N ≥ 16/3. Since we assume N ≥ 6, Equation (3) is
satisfied.

When choosing to reuse C-tiles the frequency of prefetches depends on N . Since
N is an input parameter, prefetching data from C at the correct frequency would
have required the use of code that relatively often checks whether a prefetch should
be executed. For efficiency reasons, we prefetch C outside of the tile multiplication
code, while prefetching of A- and B-tiles is done inside the inner-most loop. A- and
B-tiles are prefetched at a constant rate of one prefetch instruction every 128 cycles.
Data from C is prefetched at a much slower rate. C prefetches would not cause the
code to stall on memory accesses, even though they are not precisely timed, since
the processor allows up to 4 outstanding memory requests. This suffices because,
even if we did one prefetch of C for each prefetch from A and B, we would have had
3 prefetch instructions executed in 256 cycles, which leaves more than 80 cycles per
instruction.

To allow conflict-free mapping of two tile triplets into the cache, the matrices are
first copied into a page-aligned array of the Triplet structure, shown in Figure 7.

Proposition 2. For single precision implementation on the IBM RS/6000 43P
Model 7248, copying the tiles of the three matrices to a page-aligned array of the
Triplet structure satisfies Condition 1.

Proof. The array is page-aligned, each structure is exactly the size of two pages,
and the page size is the same as the L1 way size. This implies that every A-tile
is mapped into sets 0 to 63 of the cache, exactly once, and so is every B-tile. For
sets 64 to 127 of the cache, there are two blocks of each C-tile mapped into each
set. As the cache is 4-way set associative, Condition 1 is satisfied, allowing the
simultaneous mapping of any two triplets of tiles into the cache.

To implement the tile multiplication code, we used tiling at the register level.
We divided B-tiles into sub-tiles of size 4 × 4 elements each. A- and C-tiles are



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 19

divided accordingly into vertical stripes. In our inner-most loops we load a single
sub-tile of B into 16 registers and then traverse a 4-element wide vertical stripe
of both A and C. In each iteration, we multiply four elements of A by a sub-tile
of B, while updating four elements of C, totaling 16 scalar multiplications This
inner-most loop is unrolled to allow prefetching of A- and B-tiles without using
conditional constructs.

Mapping of elements within the tile storage area is designed such that first access
made by the tile multiplication code occur in increasing address order. A and C-
tiles are copied in vertical stripes, four elements wide. Each such 4-element sub-row
occupies consecutive memory addresses, and these sub-rows are ordered in column-
major order. B-tiles are copied such that every sub-tile of size 4 × 4 occupies a
contiguous area of memory. These sub-tiles are again arranged in column-major
order within the tile.

Prefetches are carried out according to the tiles’ layout in memory. The prefetches
of A and B are interleaved within the unrolled inner-most loop; one from A and
then one from B. Prefetches for the two halves of C are interleaved, with each half
accessed in increasing address order. Every block is prefetched only once, satisfying
Condition 2.

Proposition 3. For single precision implementation on the IBM RS/6000 43P
Model 7248, our implementation complies with Condition 3.

Proof. Our tile multiplication code loads a complete line of B into registers,
operates on the registers, and never access that same line again within this tile
multiplication phase. Thus every line of the B-tile is touched only once during a
phase, making the first access within a phase the last one. Since prefetching also
touches each line in the B-tile exactly once, the number of prefetches from a B-tile
is the same as the number of accesses to the current B-tile. Note that both access
patterns are in consecutive, increasing set indices order. The lines of A are also
prefetched in the order of their set indices and at the same frequency as the lines of
B. Our code is arranged so that each prefetch of a line of A and B follows the single
access to the corresponding B-line in the current data set. This implies that the
line of A that resides in the same set as a certain line of B is prefetched only after
that line of B is used in the current phase. The A-tile is also traversed in the order
of memory addresses, but at a rate that is 8 times greater than the rate at which
prefetches are done (each element of A-tile is accessed 8 times during a phase when
multiplied by elements from each of the 8 sub-tile columns of the B-tile). Hence,
when a prefetch occurs (whether it is for data from A or from B), the first accesses
to the current data (both from A and from B) that reside in the same set have
already occurred. In the terminology of Condition 3, this means that f j

i < pj
0 for

all j and i. Hence, we have for all m that f j
m ≤ pj

i , both when prefetching the data
from A and when prefetching the data from B, and therefore both prefetches are
pollution-free by the first case in Condition 3.

As far as prefetching C-tiles, our implementation complies with Condition 3,
when examining a sequence of tile multiplication phases through which a single
C-tile is used. Condition 3 trivially holds (i.e., no value of r exists for any prefetch
instruction pi), since C prefetching is carried out outside of the tile multiplication
code. During the first tile multiplication in a sequence that uses a specific C-tile,



20 · N. Eiron, I. Steinwarts, and M. Rodeh

the complete C-tile is accessed. Therefore, all first accesses precede any prefetch of
data that is mapped to the same cache set, or, in the terminology of Condition 3,
f j
1 < pj

0 for all j (there are two blocks of a single C-tiles mapped to each set, and
therefore the last first access is numbered 1).

5.2.2 Double Precision Implementation. For double precision matrix multiplica-
tion, the bandwidth requirements are higher by a factor of 2 as compared to single
precision matrix multiplication. In addition, the space taken up in the cache is also
doubled. This aggravates the problem of hiding the memory latency. Even if we
forgo prefetching of C-tiles all together, we still have to comply with the following
condition, derived from Equation (3):

M
I

L
(P1P2 + P2P3) ≤ P1P2P3 = W

or:
P1 + P3

P1P3
≤ L

MI
.

To make the left hand side as small as possible, assuming we fix the value of P1P3,
we should take P1=P3. Note that I ·P1P3 is exactly the size of a C-tile. Therefore,
making P1P3 larger will increase the portion of the cache consumed by the C-tiles.
For P1 = P3 = 32, a single C-tile already occupies 8KB, which is half the total
cache size of the PowerPC 604, leaving only at most 2KB for a single tile of A or
B. This implies6 that P2 cannot be greater than 8. As shown below, even with this
choice of parameters, we have only 64 cycles between two prefetch instructions; this
is not enough for completely hiding the memory latency associated with accesses
to A and B. Therefore, the timing constraints do not allow prefetching C-tiles.
Moreover there is no room in the cache for a second C-tile.

In view of the above, for the double precision implementation, we choose the
following values for the tile size parameters: P1 = P3 = 32 and P2 = 8. Given
these tile parameters, each A-tile and each B-tile is 256 elements (or 2KB) in size,
while each C-tile is 1024 elements (or 8KB) in size. Since we only prefetch A- and
B-tiles, the cache should be capable of holding two pairs of tiles from A and B in
addition to the current C-tile. The total amount of space taken up in the cache is
therefore exactly 16KB.

The total amount of work per phase is W = P1P2P3 = 32 · 8 · 32 = 8192. During
this time we prefetch one A-tile and one B-tile, totaling:

I

L
(P1P2 + P2P3) =

8
32

(256 + 256) = 128

cache lines. This means that a prefetch instruction should be executed once every
8192/128 = 64 cycles. The prefetch instructions for A- and B-tiles are interleaved
in the tile multiplication code. As we have M = 80 for this machine, memory
latencies are not completely hidden, and sub-optimal performance will result (see
Section 5.3 for a discussion of the performance penalties).

6We restrict ourselves to values of P1, P2 and P3 that are powers of 2 to make our pointer
arithmetic more efficient.



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 21

To provide partial remedy to the performance penalty observed in the double
precision case, we have developed a variant that departs from our generic cache-
aware matrix multiplication algorithm. We take advantage of the fact that C is
used for output only, and therefore the initial values of C are all zeros. We therefore
use a single memory buffer to hold C-tiles, which is always resident in the cache.
Whenever a new C-tile is required, the old one is saved into the original C matrix
and the buffer is cleared. By using a single, cache-resident, buffer to hold C-tiles,
we compensate for our inability to prefetch the data from C. However, since the
L1 cache uses allocate on write policy, copying back of the C-tiles allocates cache
lines to hold the modified data of the C matrix. This allocation may cause flushing
of prefetched data from A- and B-tiles that is intended for use in the next tile
multiplication phase. Since the combined size of an A-tile and of a B-tile is only
4KB, compared to 8KB for a single C-tile, the saving of delays for access to C-tiles
is advantageous.

5.3 Results

5.3.1 Double Precision. Figure 8 (a) shows the performance in MFLOPS of our
EDCU (Enhanced Data Cache Utilization) single C-buffer double precision matrix
multiplication implementation vs. IBM’s BLAS-3 (shown as ESSL). Figure 8 (b)
shows the relative performance of these two implementations.

For double precision data we get the following average performance figures for
the sizes of inputs we checked: IBM’s ESSL implementation achieves 115 MFLOPS,
our standard implementation achieves 130 MFLOPS, and our single C-buffer imple-
mentation achieves 140.8 MFLOPS, a 21.5% average advantage over ESSL. Another
feature of our algorithm that can be clearly seen from Figure 8 is that, performance-
wise, our design is less sensitive to changes in the size of the data in comparison
to ESSL. The performance instability evident in ESSL allows the single C-buffer
implementation to outperform the ESSL implementation by up to 31.8% on some
double precision matrices. By running our implementation with the prefetching
instructions removed, we see that prefetching alone contributes 12–15% of the to-
tal performance gain. The contribution of the other techniques we used (tiling,
copying, etc.) is not easy to measure directly, and is beyond the scope of this work.

5.3.2 Single Precision. For single precision data, the tile sizes we use are suffi-
cient to allow prefetching of all the required data. However, the memory bandwidth
is not taxed as heavily in the single precision implementation, as it is in the double
precision implementation, and so the potential for performance improvement via
memory latency hiding is smaller. This is clearly demonstrated by the performance
achieved by the naive 3-loop O(N3) matrix multiplication algorithm. While for
double precision data the naive 3-loop implementation achieves only 13.6 MFLOPS
on average, allowing us to achieve a 935% performance increase over it, its perfor-
mance is almost doubled to 23.7 MFLOPS on average for single precision numbers.
For the single precision implementation, we got the following average performance
figures for the sizes of input we checked: IBM’s ESSL implementation achieves
154.9 MFLOPS while our EDCU implementation achieves 165.5 MFLOPS, a 7%
average increase over ESSL, and up to 13% for some single precision matrices.



22 · N. Eiron, I. Steinwarts, and M. Rodeh

110

120

130

140

150

768 1024 1280 1536

45%

50%

55%

N

EDCU
ESSL

(a)

114%

116%

118%

120%

122%

124%

126%

128%

130%

132%

768 1024 1280 1536

N

(b)

Fig. 8. Performance of double precision matrix multiplication on the RS/6000 43P Model 7248:
(a) In MFLOPS and percentage of theoretical peak, (b) Relative to ESSL

5.3.3 Analysis. The main reasons for not reaching the full potential of the CPU
are related to the specific machine which does not allow a complete implementation
of our algorithm. First, the machine has a relatively small L1 cache, when consid-
ering its relatively high memory latencies. Our double precision implementation
could not prefetch the C-tile, forcing us to use instead, a single C buffer that is
copied back on every N/P2 tile multiplication phases. The copy back operation
pollutes the cache, causing delays in subsequent accesses to A- and B-tiles. In
addition, since the tile sizes we use allow only 64 cycles between prefetch instruc-
tions, we cannot fully hide memory latency, which is as high as 80 cycles. As a
consequence, the tile multiplication code of the double precision implementation
is prolonged by roughly 25% (the difference between 80 and 64). Second, the di-
rect mapped L2 cache forces a full inclusion policy on the instruction and data
L1 caches. Therefore, some data may be flushed out of the L1 cache because of



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 23

150

155

160

165

170

175

1024 1536 2048 2560

56%

59%

62%

65%

N

EDCU
ESSL

(a)

103%

104%

105%

106%

107%

108%

109%

110%

111%

112%

113%

1024 1536 2048 2560

N

(b)

Fig. 9. Performance of single precision matrix multiplication on the RS/6000 43P Model 7248:
(a) In MFLOPS and percentage of theoretical peak, (b) Relative to ESSL

conflicts in the L2 cache, which may even result from instruction access. Third, as
noted in Section 4.2, before engaging in the actual multiplication process, we copy
our input matrices into an array of interleaved tiles. For the sake of simplicity,
we chose to carry these copying operations off-line. These copying operations take
time and our measurements indicate that the overhead for the input sizes we used
is at least 14% of the peak for double precision data. Clearly, since this overhead
is O(N2) its relative influence on performance diminishes as the size of the data
increases. We have also estimated the overhead of the control constructs of the two
inner most loops to be roughly 5%, for both the single precision and the double
precision implementations. Outer loops contribute even more overhead to the total
running time of the implementation.

Last, but not least, one must bear in mind that the measurements we made
were carried out under a general-purpose time sharing operating system. Context



24 · N. Eiron, I. Steinwarts, and M. Rodeh

switches, interrupt processing, page faults and other system activities contribute
to the total running time of the implementation, even when measuring just CPU
time, by causing pollution of the caches and the TLBs.

6. GENERIC GUIDELINES

In this section we present a generalization of the matrix multiplication algorithm
described in Section 4. We generalize the algorithm to a set of conditions and guide-
lines that may be applied to a much wider class of compute intensive algorithms
that use a large data set. Implementations that follow these guidelines allow pro-
cessing of the input data set in a manner that does not suffer from memory latency,
when running on architectures that comply with our abstract machine model.

6.1 Tolerating Capacity and Cold Start Misses

For the sake of this discussion we assume that the cache is fully associative. Again,
we defer the discussion of other cache designs to the following subsection.

Consider an algorithm which runs in time f(D) to process a data set D of size
D bytes. We impose the following requirements:

—The algorithm may be broken into phases, such that the total running time of
the algorithm remains f(D).

—Each phase of the algorithm accesses a subset δi of the data.
—Each of the subsets δi occupies l cache lines.
—Each phase modifies m lines out of the l lines it uses.
—Each phase executes in W cycles, assuming all memory accesses hit in the L1

data cache. Notice that W is a function of the size of δi.

If

M · (l + m) ≤ W (4)

then a single phase runs long enough to allow us to prefetch all the data required by
the next phase on time. Note that Equation (4) includes the term m that represents
the system-bus transactions that will be executed in order to write the modified
lines back into the lower levels of the memory hierarchy.

Assuming that the time complexity W of a single phase is super-linear in the
size of its inputs, Equation (4) places a lower bound on the data size used in each
phase, since, to satisfy the condition of Equation (4), we must have:

M ≤ W

l + m

Since l + m is clearly at most linear in l, we get a lower bound on W/l. Since W is
super-linear in the size of the data, this equation holds for a sufficiently large value
of l, and thus it imposes a lower bound on l.

To allow for latency-free computation during every phase, the cache must be large
enough to simultaneously hold the data required in every phase as well as the data
that will be used in the next phase. Therefore, we have the following requirement:

2 · l ≤ C

L
(5)



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 25

This requirement places an upper bound on the size of the data set used by each
phase.

Assuming that both (4) and (5) are met by the algorithm and the machine
characteristics, we may resort to a blocked implementation. Prefetch instructions
may be spread within each phase so that, if prefetching is pollution-free, all the data
required for a phase is present in the L1 cache at the beginning of the phase. This
allows us to completely eliminate capacity misses and hide all cold-start misses,
provided that the cache is fully-associative.

In this discussion, we made the assumption that the data sets used by any two
phases are disjoint. If this assumption may be relaxed then some of the phases
will reuse data of previous phases, thereby reducing the load on the system-bus.
This, of course, leads to a relaxation of Equation (4), analogous to Equation (3),
that supports efficient implementations even when memory bandwidth is too low
to satisfy Equation (4).

6.2 Avoiding Cache Conflicts

We now consider cache designs that are not fully associative. When using a K-way
set associative cache where K is even (otherwise use bK/2c instead of K/2), the
following condition allows any two data sets to be mapped into the cache simulta-
neously:

Condition 4. The data should be restructured so that each data set δi occupies
at most K/2 lines in each cache set and at most l cache lines total, such that no
more than m of them are modified in any phase.

This condition is sufficient but not necessary, since it is equivalent to having any
two data sets fit in the cache, and not just two data sets used in consecutive phases.

Condition 4 does not apply to direct mapped caches. In general, for direct
mapped caches, the data should be restructured such that for every phase i, the
cache lines occupied by δi and δi+1 are disjoint. While this can be achieved by
copying each δi to a pre-designated location, such copying involves considerable
overhead. However, in many practical cases (see Subsection 4.2), by exploiting the
internal structure of the phases’ data sets and the code of the algorithm, mapping
that allows conflict-free operation with direct-mapped caches can still be obtained
with only moderate copying.

6.3 Avoiding Cache Pollution

Careful examination of the conditions on access patterns described in Section 4.3
shows that these conditions were not specific to the case of matrix multiplication.
Theorem 1 and its proof may be applied, unchanged, even in the generalized setting.

7. CONCLUSION

To achieve good performance, numeric algorithms should balance computation with
data movement. We have presented a new cache-aware O(N3) matrix multiplica-
tion algorithm. We have proved this algorithm to suffer no memory latency when
running on an architecture that fits the assumptions of the machine model intro-
duced. Furthermore, this algorithm uses only the smallest part of the cache that



26 · N. Eiron, I. Steinwarts, and M. Rodeh

can still balance the memory bandwidth. Using a larger cache than the minimum
required will have no further impact on performance.

Our experiments show that, even for platforms that are not ideally suited for the
suggested techniques, the implementation of the matrix multiplication algorithm
we present is superior.

While the technique presented in this work was demonstrated for O(N3) matrix
multiplication, we also presented generic guidelines and conditions for cache-aware
design of compute intensive algorithms, that promise latency-free operation. It
is yet to be established in practice whether these guidelines may be effectively
implemented on real-life architectures.

Insight regarding effective exploitation of contemporary memory hierarchies has
been gained. We believe that some of our concepts may be embedded in compilers.

ACKNOWLEDGMENTS

Many members of the IBM Haifa Research Lab helped us throughout this research.
We are specifically indebted to David Bernstein for his helpful advice, that con-
tributed greatly to this work.

REFERENCES

Agarwal, R. C., Gustavson, F. G., and Zubair, M. 1994. Improving performance of
linear algebra algorithms for dense matrices, using algorithmic prefetch. IBM J. of Research
and Development 38, 3, 265–275.

Callahan, D., Kennedy, K., and Porterfield, A. 1991a. The cache performance and
optimizations of blocked algorithms. In Proceedings of ASPLOS’91 (1991), pp. 63–74.

Callahan, D., Kennedy, K., and Porterfield, A. 1991b. Software prefetching. In Pro-
ceedings of ASPLOS’91 (1991), pp. 40–52.

Digital Equipment Corp. 1998. 21164 Alpha Microprocessor Data Sheet. Digital Equipment
Corp.

Eiron, N., Rodeh, M., and Steinwarts, I. 1998. Matrix multiplication: A case study of
algorithm engineering. In Proceedings of WAE’98 (August 1998), pp. 40–52. Max-Plank-
Institut für Informatik.

Farkas, K. and Jouppi, N. 1994. Complexity/performance tradeoffs with non-blocking
loads. In Proceedings of ISCA’94 (1994), pp. 211–222.

Gustavson, F. G. 1998. Personal Communication.

Hennessy, J. L. and Patterson, D. A. 1996. Computer Architecture: A Quantitive Ap-
proach (Second ed.). Morgan Kaufmann Publishers Inc.

IBM Corp. 1997. IBM Engineering and Scientific Subroutine Library for AIX, Version 3
– Guide and Reference. IBM Corp.

IBM Microelectronics and Motorola Inc. 1994. PowerPC 604 RISC Microprocessor User’s
Manual. IBM Microelectronics and Motorola Inc.

Lam, M. S. 1988. Software pipelining: An effective technique for vliw machines. In Pro-
ceedings of SIGPLAN’88 (1988), pp. 318–328.

Lee, J. H., Lee, M. Y., Choi, S. U., and Park, M. S. 1994. Reducing cache conflicts in
data cache prefetching. Computer Architecture News 22, 4, 71–77.

Mowry, T. C. 1994. Tolerating Latency Through Software-Controlled Data Prefetching.
Ph. D. thesis, Stanford University.

Mowry, T. C., Lam, M. S., and Gupta, A. 1992. Design and evaluation of a compiler
algorithm for data prefetching. In Proceedings of ASPLOS’92 (1992), pp. 62–73.

Navarro, J. J., Garćia-Diego, E., and Herrero, J. R. 1992. Data prefetching and mul-
tilevel blocking for linear algebra operations. In Proceedings of ICS’96 (1992), pp. 109–116.



Matrix Multiplication: A Case Study of Enhanced Data Cache Utilization · 27

Stewart, K. E. 1994. Using the xl compiler options to improve application performance.
In PowerPC and POWER2, Technical Aspects of the New IBM RISC System/6000 . IBM
Corp.

Temam, O., Granston, E. D., and Jalby, W. 1993. To copy or not to copy: A compile-
time technique for assessing when data copying should be used to eliminate cache conflicts.
In Proceedings of SUPERCOMPUTING’93 (1993), pp. 410–419.


