
PAC Learning with Nasty Noise

Nader H. Bshouty∗

Department of Computer Science,
Technion – Israel Institute of Technology,

Haifa 32000, Israel.
email: bshouty@cs.technion.ac.il

Nadav Eiron†

IBM Almaden Research Center, 650 Harry Road,
San Jose, CA 95120, USA.
email: nadav@us.ibm.com

Eyal Kushilevitz
Department of Computer Science,

Technion – Israel Institute of Technology,
Haifa 32000, Israel.

email: eyalk@cs.technion.ac.il

Abstract

We introduce a new model for learning in the presence of noise, which we call the Nasty
Noise model. This model generalizes previously considered models of learning with noise. The
learning process in this model, which is a variant of the PAC model, proceeds as follows: Suppose
that the learning algorithm during its execution asks for m examples. The examples that the
algorithm gets are generated by a nasty adversary that works according to a following steps.
First, the adversary chooses m examples (independently) according to the fixed (but unknown
to the learning algorithm) distribution D as in the PAC-model. Then the powerful adversary,
upon seeing the specific m examples that were chosen (and using his knowledge of the target
function, the distribution D and the learning algorithm), is allowed to remove a fraction of the
examples at its choice, and replace these examples by the same number of arbitrary examples of
its choice; the m modified examples are then given to the learning algorithm. The only restriction
on the adversary is that the number of examples that the adversary is allowed to modify should
be distributed according to a binomial distribution with parameters η (the noise rate) and m.

On the negative side, we prove that no algorithm can achieve accuracy of ε < 2η in learning
any non-trivial class of functions. We also give some lower bounds on the sample complexity
required to achieve accuracy ε = 2η +∆. On the positive side, we show that a polynomial (in the
usual parameters, and in 1/(ε − 2η)) number of examples suffice for learning any class of finite
VC-dimension with accuracy ε > 2η. This algorithm may not be efficient; however, we also show
that a fairly wide family of concept classes can be efficiently learned in the presence of nasty noise.

∗This research was supported by the fund for the promotion of research at the Technion. Part of this research was
done at the University of Calgary, Calgary, Alberta, Canada.

†Some of this research was done while this author was a graduate student in the Department of Computer Science,
Technion, Haifa, Israel

1 Introduction

Valiant’s PAC model of learning [22] is one of the most important models for learning from examples.
Although being an extremely elegant model, the PAC model has some drawbacks. In particular, it
assumes that the learning algorithm has access to a perfect source of random examples. Namely,
upon request, the learning algorithm can ask for random examples and in return gets pairs (x, ct(x))
where all the x’s are points in the input space distributed identically and independently according
to some fixed probability distribution D, and ct(x) is the correct classification of x according to the
target function ct that the algorithm tries to learn.

Since Valiant’s seminal work, there were several attempts to relax these assumptions, by intro-
ducing models of noise. The first such noise model, called the Random Classification Noise model,
was introduced in [2] and was extensively studied, e.g., in [1, 6, 9, 12, 13, 16]. In this model the
adversary, before providing each example (x, ct(x)) to the learning algorithm tosses a biased coin;
whenever the coin shows “H”, which happens with probability η, the classification of the example is
flipped and so the algorithm is provided with the, wrongly classified, example (x, 1− ct(x)). Another
(stronger) model, called the Malicious Noise model, was introduced in [23], revisited in [17], and
was further studied in [8, 10, 11, 20]. In this model the adversary, whenever the η-biased coin shows
“H”, can replace the example (x, ct(x)) by some arbitrary pair (x′, b) where x′ is any point in the
input space and b is a boolean value. (Note that this in particular gives the adversary the power to
“distort” the distribution D.)

In this work, we present a new model which we call the Nasty (Sample) Noise model. In this
model, the adversary gets to see the whole sample of examples requested by the learning algorithm
before giving it to the algorithm and then modify E of the examples, at its choice, where E is a
random variable distributed by the binomial distribution with parameters η and m, where m is the
size of the sample. This distribution makes the number of examples modified be the same as if it were
determined by m independent tosses of an η-biased coin. However, we allow the adversary’s choice
to be dependent on the sample drawn. The modification applied by the adversary can be arbitrary
(as in the Malicious Noise model).1 Intuitively speaking, the new adversary is more powerful than
the previous ones – it can examine the whole sample and then remove from it the most “informative”
examples and replace them by less useful and even misleading examples (whereas in the Malicious
Noise Model for instance, the adversary also may insert to the sample misleading examples but does
not have the freedom to choose which examples to remove). The relationships between the various
models are shown in Table 1.

Random Noise-Location Adversarial Noise-Location
Label Noise Only Random Classification Noise Nasty Classification Noise
Point and Label Noise Malicious Noise Nasty Sample Noise

Table 1: Summary of models for PAC-learning from noisy data

We argue that the newly introduced model, not only generalizes the previous noise models,
including variants such as Decatur’s CAM model [11] and CPCN model [12], but also applies to real-
life situations more appropriately. For example, when training data is the result of some physical
experiment, noise may tend to be stronger in boundary areas rather than being uniformly distributed
over all inputs. While special models were devised to describe this situation in the exact-learning

1We also consider a weaker variant of this model, called the Nasty Classification Noise model, where the adversary
may modify only the classification of the chosen points (as in the Random Classification Noise model).

1

setting (for example, the incomplete boundary query model of Blum et al., [5]), it may be regarded
as a special case of Nasty Noise, where the adversary chooses to provide unreliable answers on sample
points that are near the boundary of the target concept (or to remove such points from the sample).
Another situation to which our model is related is the setting of Agnostic Learning. In this model,
a concept class is not given. Instead, the learning algorithm needs to minimize the empirical error
while using a hypothesis from a predefined hypotheses class (see, for example, [18] for a definition
of the model). Assuming the best hypothesis misclassifies the input up to an η fraction, we may
alternatively see the problem as that of learning the hypotheses class under nasty noise of rate η.
However, we note that the success criterion in the agnostic learning literature is different from the
one used in our PAC-based setting.

We show two types of results. Sections 3 and 4 show information theoretic results, and Sect. 5
shows algorithmic results. The first result, presented in Section 3, is a lower bound on the accuracy
achievable when learning with a nasty adversary. This result shows that any learning algorithm
cannot learn any non-trivial concept class with accuracy better than 2η when the sample contains
nasty noise of rate η. We further show that learning a concept class of VC dimension d with accuracy
ε = ∆ + 2η requires Ω(η/∆2 + d/∆) examples (assuming a constant confidence parameter δ). It is
complemented by a matching positive result in Section 4 that shows that any class of finite VC-
dimension can be learned by using a sample of polynomial size, with any accuracy ε > 2η. The size
of the sample required is polynomial in the usual PAC parameters and in 1/∆ where ∆ = ε− 2η is
the margin between the requested accuracy ε and the above mentioned lower bound.

The main, quite surprising, result (presented in Section 5) is another positive result showing that
efficient learning algorithms are still possible in spite of the powerful adversary. More specifically, we
present a composition theorem (analogous to [3, 8] but for the nasty-noise learning model) that shows
that any concept class that is constructed by composing concept classes that are PAC-learnable from
a hypothesis class of fixed VC-dimension, is efficiently learnable when using a sample subject to
nasty noise. This includes, for instance, the class of all concepts formed by any boolean combination
of half-spaces in a constant dimensional Euclidean space. The complexity here is, again, polynomial
in the usual parameters and in 1/∆. The algorithm used in the proof of this result is an adaptation
to our model of the PAC algorithm presented in [8].

Our results may be compared to similar results available for the Malicious Noise model. For this
model, Cesa-Bianchi et al. [10] show that the accuracy of learning with malicious noise of rate η is
lower bounded by η/(1 − η). A matching algorithm for learning classes similar to those presented
here with malicious noise is presented in [8]. As for the Random Classification Noise model, learning
with arbitrarily small accuracy, even when the noise rate is close to a half, is possible. Again, the
techniques presented in [8] may be used to learn the same type of classes we examine in this work
with Random Classification Noise.

2 Preliminaries

In this section we provide basic definitions related to learning in the PAC model, with and without
noise. A learning task is specified using a concept class, denoted C, of boolean concepts defined over
an instance space, denoted X . A boolean concept c is a function c : X 7→ {0, 1}. The concept class
C is a set of boolean concepts: C ⊆ {0, 1}X .

Throughout this paper we sometimes treat a concept as a set of points instead of as a boolean
function. The set that corresponds to a concept c is simply {x|c(x) = 1}. We use c to denote both
the function and the corresponding set interchangeably. Specifically, when a probability distribution
D is defined over X , we use the notation D(c) to refer to the probability that a point x drawn from

2

X according to D will have c(x) = 1.

2.1 The Classical PAC Model

The Probably Approximately Correct (PAC) model was originally presented by Valiant [22]. In this
model, the learning algorithm has access to an oracle PAC that returns on each call a labeled example
(x, ct(x)) where x ∈ X is drawn (independently) according to a fixed distribution D over X , unknown
to the learning algorithm, and ct ∈ C is the target function the learning algorithm should “learn”.

Definition 1: A class C of boolean functions is PAC-learnable using hypothesis class H in polynomial
time if there exists an algorithm that, for any ct ∈ C, any input parameters 0 < ε < 1/2 and 0 < δ < 1
and any distribution D on X , when given access to the PAC oracle, runs in time polynomial in the
representation size of the target, 1/δ, 1/ε and with probability at least 1−δ outputs a function h ∈ H
for which:

Pr
D

[ct(x) 6= h(x)] < ε.

2.2 Models for Learning in the Presence of Noise

Next, we define the model of PAC-learning in the presence of Nasty Sample Noise (NSN for short).
In this model, a learning algorithm for the concept class C is given access to an (adversarial) oracle
NSNC,η(m). The learning algorithm is allowed to call this oracle once during a single run. The
learning algorithm passes a single natural number m to the oracle, specifying the size of the sample
it needs, and gets in return a labeled sample S ∈ (X × {0, 1})m. (It is assumed, for simplicity, that
the algorithm knows in advance the number of examples it needs; the extension of the model for
scenarios where such a bound is not available in advance is given in Section 6.)

The sample required by the learning algorithm is constructed as follows: As in the PAC model,
a distribution D over the instance space X is defined, and a target concept ct ∈ C is chosen. The
adversary then draws a sample Sg of m points from X according to the distribution D. Having full
knowledge of the learning algorithm, the target function ct, the distribution D, and the sample drawn,
the adversary chooses E = E(Sg) points from the sample, where E(Sg) is a random variable (which
may also depend on the adversary’s internal randomness). The E points chosen by the adversary are
removed from the sample and replaced by any other E point-and-label pairs by the adversary. The
m−E points not chosen by the adversary remain unchanged and are labeled by their correct labels
according to ct. The modified sample of m points, denoted S, is then given to the learning algorithm.
The only limitation that the adversary has on the number of examples that it may modify is that it
should be distributed according to the binomial distribution with parameters m and η, namely:

Pr[E = n] =
(

m
n

)
ηn(1− η)m−n,

where the probability is taken by first choosing Sg ∈ Dm and then choosing E according to the
corresponding random variable E(Sg).

Definition 2: An algorithm A is said to learn a class C with nasty sample noise of rate η ≥ 0 with
accuracy parameter ε > 0 and confidence parameter δ < 1 if, given access to any oracle NSNC,η(m),
for any distribution D and any target ct ∈ C it outputs a hypothesis h : X 7→ {0, 1} such that, with
probability at least 1− δ

Pr
D

[h4ct] < ε.

3

We are also interested in a restriction of this model, which we call the Nasty Classification Noise
learning model (NCN for short). The only difference between the NCN and NSN models is that the
NCN adversary is only allowed to modify the labels of the E chosen sample-points, but it cannot
modify the E points themselves. Previous models of learning in the presence of noise can also
be readily shown to be restrictions of the Nasty Sample Noise model: The Malicious Noise model
corresponds to the Nasty Noise model with the adversary restricted to introducing noise into points
that are chosen uniformly at random, with probability η, from the original sample. The Random
Classification Noise model corresponds to the Nasty Classification Noise model with the adversary
restricted so that noise is introduced into points chosen uniformly at random, with probability η,
from the original sample, and each point that is chosen gets its label flipped.

2.3 VC Theory Basics

The VC-dimension [24], is widely used in learning theory to measure the complexity of concept
classes. We say a set Y ⊆ X is shattered by C if, for each of the 2|Y | possible labelings of the
points in Y , there exists some function in C consistent with that labeling. The VC-dimension of
a class C, denoted VCdim(C), is the maximal integer d such that there exists a subset Y ⊆ X of
cardinality d that is shattered by the class C. We say VCdim(C) = ∞ if such a subset exists for any
natural d. It is well known (e.g., [4]) that, for any two classes C and H (over X), the class of negations
{c|X \ c ∈ C} has the same VC-dimension as the class C, and the class of unions {c ∪ h|c ∈ C, h ∈ H}
has VC-dimension at most VCdim(C)+VCdim(H)+1. Following [3] we define the dual of a concept
class:

Definition 3: The dual H⊥ ⊆ {0, 1}H of a class H ⊆ {0, 1}X is defined to be the set
{
x⊥|x ∈ X

}

where x⊥ is defined by x⊥(h) = h(x) for all h ∈ H.

If we view a concept class H as a boolean matrix where each row represents a concept and each
column a point from the instance space, X , then the matrix corresponding to H⊥ is the transpose
of the matrix corresponding to H. The following claim, from [3], gives a tight bound on the VC
dimension of the dual class:

Claim 1: For every class H,

VCdim(H) ≥
⌊
log VCdim(H⊥)

⌋
.

In the following discussion we limit ourselves to concept classes of finite concepts (i.e., ∀c ∈ C, |c|
is finite). The main use we make of the VC-dimension is in constructing α-nets. The following
definition and theorem are from [7]:

Definition 4: A set of points Y ⊆ X is an α-net for the concept class H ⊆ {0, 1}X under the
distribution D over X , if for every h ∈ H such that D(h) ≥ α, Y ∩ h 6= ∅.

Theorem 1: For any class H ⊆ {0, 1}X of VC-dimension d, any distribution D over X , and any
α > 0, δ > 0, if

m ≥ max
{

4
α

log
2
δ
,
8d

α
log

13
α

}

examples are drawn i.i.d. from X according to the distribution D, they constitute an α-net for H
with probability at least 1− δ.

4

In [21], Talagrand proved a similar result:

Definition 5: A set of points Y ⊆ X is an α-sample for the concept class H ⊆ {0, 1}X under the
distribution D over X , if it holds that for every h ∈ H:

∣∣∣∣D(h)− |Y ∩ h|
|Y |

∣∣∣∣ ≤ α

Theorem 2: There is a constant c1, such that for any class H ⊆ {0, 1}X of VC-dimension d, and
distribution D over X , and any α > 0, δ > 0, if

m ≥ c1

α2

(
d + log

1
δ

)

examples are drawn i.i.d. from X according to the distribution D, they constitute an α-sample for
H with probability at least 1− δ.

3 Information Theoretic Lower Bound

In this section we show that no learning algorithm (not even inefficient ones) can learn a “non-
trivial” concept class with accuracy ε better than 2η under the NSN model; in fact, we prove that
this impossibility result holds even for the NCN model. We also give some results on the size of
samples required to learn in the NSN model with accuracy ε > 2η.

Definition 6: A concept class C over an instance space X is called non-trivial if there exist two
points x1, x2 ∈ X and two concepts c1, c2 ∈ C, such that c1(x1) = c2(x1) and c1(x2) 6= c2(x2).

Theorem 3: Let C be a non-trivial concept class, η be a noise rate and ε < 2η be an accuracy
parameter. Then, there is no algorithm that learns the concept class C with accuracy ε and confidence
parameter δ < 1

2 under the NCN model (with rate η).

Proof: We base our proof on the method of induced distributions introduced in [17, Theo-
rem 1]. We show that there are two concepts c1, c2 ∈ C and a probability distribution D such that
PrD[c14c2] = 2η and an adversary can force the labeled examples shown to the learning algorithm
to be distributed identically both when c1 is the target and when c2 is the target.

Let c1 and c2 be the two concepts whose existence is guaranteed by the fact that C is a non-trivial
class, and let x1, x2 ∈ X be the two points that satisfy c1(x1) = c2(x1) and c1(x2) 6= c2(x2). We
define the probability distribution D to be D(x1) = 1 − 2η, D(x2) = 2η, and D(x) = 0 for all
x ∈ X \ {x1, x2}. Clearly, we indeed have PrD[c14c2] = PrD[x2] = 2η.

Now, we define the nasty adversary strategy (with respect to the above probability distribution
D). Let m be the size of the sample asked by the learning algorithm. The adversary starts by drawing
a sample Sg of m points according to the above distribution. Then, for each occurrence of x1 in the
sample, the adversary labels it correctly according to ct, while for each occurrence of x2 the adversary
tosses a coin and with probability 1/2 it labels the point correctly (i.e., ct(x2)) and with probability
1/2 it flips the label (to 1 − ct(x2)). The resulted sample of m examples is given by the adversary
to the learning algorithm. First, we argue that the number of examples modified by the adversary
is indeed distributed according to the binomial distribution with parameters η and m. For this, we
view the above adversary as if it picks independently m points and for each of them decides (as

5

above) whether to flip its label. Hence, it suffices to show that each example is labeled incorrectly
with probability η independently of other examples. Indeed, for each example independently, its
probability of being labeled incorrectly equals the probability of choosing x2 according to D times
the probability that the adversary chooses to flip the label on an x2 example; i.e. 2η · (1/2) = η
as needed. (We emphasize that the binomial distribution is obtained because D is known to the
adversary.)

Next observe that, no matter whether the target is c1 or c2, the examples given to the learning
algorithm (after being modified by the above nasty adversary) are distributed according to the
following probability distribution:

Pr[x1, c1(x1)] = 1− 2η

Pr[x2, c1(x2)] = Pr[x2, c2(x2)] = η

Therefore, according to the sample that the learning algorithm sees, it is impossible to differentiate
between the case where the target function is c1 and the case where the target function is c2, hence
no algorithm can do any better than a random guess, which gives confidence 1

2 .
Note that in the above proof we indeed take advantage of the “nastiness” of the adversary. Unlike

the malicious adversary, our adversary can focus all its “power” on just the point x2, causing it to
suffer a relatively high error rate, while examples in which the point is x1 do not suffer any noise. We
also took advantage of the fact that E (the number of modified examples) is allowed to depend on
the sample (in our case, it depends on the number of times x2 appears in the original sample). This
allows the adversary to further focus its destructive power on samples which were otherwise “good”
for the learning algorithm. Finally, since any NCN adversary is also a NSN adversary, Theorem 3
implies the following:

Corollary 4: Let C be a non-trivial concept class, η > 0 be the noise rate, and ε < 2η be an
accuracy parameter. There is no algorithm that learns the concept class C with accuracy ε and
confidence parameter δ < 1

2 under the NSN model, with noise rate η.

Once we have settled 2η as the lower bound on the accuracy possible with a nasty adversary with
error rate η, we turn to the question of the number of examples that are necessary to learn a concept
class with some accuracy ε = 2η + ∆, where ∆ > 0. Again, in this section we are only considering
information-theoretic issues. These results are similar to those presented by Cesa-Bianchi et al. [10]
for the Malicious Noise model. Note, however, that the definition of the margin ∆ used here is
relative to a lower bound different than the one used in [10]. In the proofs of these results, we use
the following claim (see [10]) that provides a lower bound on the probability that a random variable
of binomial distribution deviates from its expectation by more than the standard deviation:

Claim 2: [10, Fact 3.2] Let SN,p be a random variable distributed by the binomial distribution with
parameters N and p, and let q = 1− p. For all N > 37/(pq):

Pr
[
SN,p ≥ bNpc+

⌊√
Npq − 1

⌋]
>

1
19

(1)

Pr
[
SN,p ≤ dNpe −

⌊√
Npq − 1

⌋]
>

1
19

(2)

Theorem 5: For any nontrivial concept class C, any noise rate η > 0, confidence parameter 0 < δ <
1/342 and 0 < ∆ < 0.084065 ·η, the sample size needed for PAC learning C with accuracy ε = 2η+∆
and confidence 1− δ tolerating nasty classification noise of rate η is at least

m ≥ 17η(1− η)
37∆2

= Ω
(

η

∆2

)
.

6

Proof: Let c1 and c2 be the two concepts whose existence is guaranteed by the fact that C is a non-
trivial class, and let x1, x2 ∈ X be the two points that satisfy c1(x1) = c2(x1) and c1(x2) 6= c2(x2).
Let us define a distribution D that gives weight ε to the point x2 and weight 1 − ε to x1, making
PrD(c14c2) = ε. Denote by ct the target function (either c1 or c2).

The Nasty Classification Adversary will use the following strategy: for each pair of the form
(x2, ct(x2)) in the sample, with probability η/ε reverse the label (i.e., present to the learning algorithm
the pair (x2, 1− ct(x2)) instead). The rest of the sample (all the pairs of the form (x1, ct(x1))) is left
unmodified. Note that for each of the m examples the probability that its classification is changed is
therefore exactly ε· ηε = η and so the number of points that suffer noise is indeed distributed according
to the binomial distribution with parameters η and m. The induced probability distribution on the
sample that the learning algorithm sees is:

Pr(x1, ct(x1)) = 1− ε

Pr(x2, ct(x2)) = ε · (1− η

ε
) = ε− η = η + ∆

Pr(x2, 1− ct(x2)) = ε · η

ε
= η

For contradiction, let A be a (possibly randomized) algorithm that learns C with accuracy ε using
a sample generated by the above oracle and whose size is m < (17η(1 − η))/(37∆2). We denote
by pA(m) the expected error of the hypothesis h that A outputs when using m examples. Let B
be the Bayes strategy of outputting c1 if the majority instances of x2 are labeled c1(x2), and c2

otherwise. Clearly, this strategy minimizes the probability of choosing the wrong hypothesis. This
implies pB(m) ≤ pA(m) for all m.

Define the following two events over runs of B on samples of size m: Let N denote the number
of examples in m showing the point x2. BAD1 is the event that at least dN/2e + 1 points are
corrupted, and BAD2 is the event that N ≤ 36η(η + ∆)/(37∆2). Clearly, BAD1 implies that B will
answer incorrectly, as there will be more examples showing x2 with the wrong label than examples
showing x2 with the correct label. To prove our theorem we will give two lower bounds: One for
Pr[BAD1|BAD2], and the other for Pr[BAD2].

Examine now the probability that BAD2 will occur. Note that N is a random variable distributed
by the binomial distribution with parameters m and ε (and recall that ε = 2η+∆). We are interested
in:

Pr[BAD2] = Pr
[
N ≤ 36η(η + ∆)

37∆2

]
≥ Pr

[
N ≤ 18ηε

37∆2

]
.

Since the probability that N is large is higher when m is larger, and m is upper bounded by (17η(1−
η))/(37∆2), we have that:

Pr[BAD2] ≥ Pr
[
N ≤ 18

17
mε

]
= Pr

[
N

E[N]
− 1 ≤ 1

17

]
.

Let us assume for now, that m ≥ 17/ε (we will later see that this assumption is superfluous). Thus,
using Chernoff’s inequality, we get:

Pr[BAD2] ≥ 1− e−1/17.

On the other hand, if we assume that BAD2 holds, namely that N ≤ 36η(η +∆)/(37∆2), and we
additionally assume that N ≥ 37(2η +∆)2/(η(η +∆)) then, by Claim 2 (with p = η/ε = η/(2η +∆))

7

and using the following inequality

⌊
N

η

2η + ∆

⌋
+

⌊√
N

η(η + ∆)
(2η + ∆)2

− 1

⌋
≥

⌈
1
2
N

⌉
+ 1 (3)

it follows that Pr[BAD1|BAD2] > 1/19. To see that the inequality of Equation (3) indeed holds
when BAD2 holds, note that (3) is implied by:

N
η

2η + ∆
+

√
N

η(η + ∆)
(2η + ∆)2

− 1 ≥ 1
2
N + 3

which is, in turn, implied by the two conditions:

1
2

√
N

η(η + ∆)
(2η + ∆)2

− 1 ≥ 3

1
2

√
N

η(η + ∆)
(2η + ∆)2

− 1 ≥ 1
2
N

∆
2η + ∆

It can be verified that these two conditions hold if we take N to be in the range we assume:2

36η(η + ∆)/(37∆2) ≥ N ≥ 37(2η + ∆)2/(η(η + ∆)). Since B is an optimal strategy, and hence no
worse than a strategy that ignores some of the sample points, its error can only decrease if more
points are shown for x2 (otherwise, assume B achieves better error bounds for lower values of N .
Now, an algorithm C that modifies some of the sample points that show x2 to examples showing x1,
then run B on the resulting sample, will perform better than B, in contradiction with the optimality
of the Bayes strategy). Therefore, the same results will hold if we remove the lower bound on N .
We thus have that Pr[BAD1] ≥ Pr[BAD1|BAD2] ·Pr[BAD2] ≥ 1/19 · (1− e−1/17) > 1/342, under the
assumption that m ≥ 17/ε.

We now argue that the lower bound on m may be removed. Assume that this assumption on m
is indeed required. This means that there exists a learning algorithm A that can learn with noise
rate η and confidence δ to within accuracy η + 2∆ using mA < 17/ε examples. Note further, that
by our conditions on ∆, we have that 17/ε < 17η(1− η)/(37∆2). Consider an algorithm B that uses
17/ε < mB < 17η(1 − η)/(37∆2) examples and works as follows: B randomly draws mA examples
from its sample, and feeds them to A. Clearly, B is a learning algorithm with the required parameters
(since we assumed A is), but, B contradicts our proof, since it uses mB > 17/ε examples, but less
than 17η(1− η)/(37∆2) examples. Thus, no such algorithm A may exist, and the lower bound on m
may be safely removed.

A second type of a lower bound on the number of required examples is based on the VC dimension
of the class to be learned, and is similar to the results (and the proof techniques) of [7] for the standard
PAC model:

Theorem 6: For any concept class C with VC-dimension d ≥ 3, and for any 0 < ε ≤ 1/8, 0 < ∆ < ε
and 0 < δ ≤ 1/12, the sample size required to learn C with accuracy ε and confidence δ when using
samples generated by a nasty classification adversary with error rate η = 1/2(ε−∆) is greater than

d− 2
32∆

= Ω
(

d

∆

)
.

2By our conditions on ∆ there must be at least one integer in the range we assume for N .

8

Proof: Let X = {x0, . . . , xd−1} be a set of d points shattered by C. Define a probability
distribution D as follows:

D(x0) = 1− 2η − 8∆

D(x1) = · · · = D(xd−2) =
8∆

d− 2
D(xd−1) = 2η

Assume for contradiction that at most (d−2)/32∆ examples are used by the learning algorithm. We
let the nasty adversary behave as follows: it reverses the label on each example xd−1 with probability
1/2 (independent of any other sample points), making the labels of xd−1 appear as if they are just
random noise (also note that the probability of each example to be corrupted by the adversary is
exactly 2η · 0.5 = η). Thus, with probability 1/2 the point xd−1 is misclassified by the learner’s
hypothesis. The rest of the sample is left unmodified. Denote by BAD1 the event that at least half
of the points x1, . . . , xd−2 are not seen by the learning algorithm. Given BAD1, we denote UP the
set of (d−2)/2 unseen points with lowest indices, and define BAD2 as the event that the algorithm’s
hypothesis misclassifies at least (d − 2)/8 points from UP. Finally, let BAD3 denote the event that
xd−1 is misclassified. It is easy to see that BAD1 ∧ BAD2 ∧ BAD3 imply that the hypothesis has
error of at least ε, as it implies that the hypothesis errs on (d − 2)/8 points where each of these
points has weight 8∆/(d − 2) and on the point xd−1 whose weight is 2η, making the total error
at least ∆ + 2η = ε. Therefore, if an algorithm A can learn the class with confidence δ, it must
hold that Pr[BAD1 ∧ BAD2 ∧ BAD3] < δ. As noted before, xd−1 appears to be labeled by random
noise, and hence Pr[BAD3] = 1

2 , no matter what the true classification of xd−1 is; moreover, BAD3

is independent of BAD1 and BAD2, thus Pr[BAD3|BAD1, BAD2] = 1
2 .

As for the other events, since at most (d − 2)/32∆ examples are seen, the expected number of
points from x1, . . . , xd−2 that the learning algorithm sees is at most (d − 2)/4. From the Markov
inequality it follows that, with probability at least 1

2 , no more than (d−2)/2 points are seen. Hence,
Pr[BAD1] > 1

2 . Every unseen point will be misclassified by the learning algorithm with probability
at least half (since for each such point, the adversary could have chosen a target that labels the point
with the label that has lower probability to be given by the algorithm). Thus Pr[BAD2|BAD1] is
the probability that a fair coin flipped (d − 2)/2 times shows heads at least (d − 2)/8 times. Using
[10, Fact 3.3] this probability can be shown to be at least 1/3. We thus have:

Pr[BAD1 ∧ BAD2 ∧ BAD3] = Pr[BAD1] · Pr[BAD2|BAD1] · Pr[BAD3|BAD1,BAD2]

>
1
2
· 1
3
· 1
2

=
1
12

≥ δ.

This completes the proof.
Since learning with Nasty Sample Noise is not easier than learning with Nasty Classification

Noise, the results of Theorems 5 and 6 also hold for learning from a Nasty Sample Noise oracle.

4 Information Theoretic Upper Bound

In this section we provide a positive result that complements the negative result of Section 3. This
result shows that, given a sufficiently large sample, any hypothesis that performs sufficiently well on
the sample (even when this sample is subject to nasty noise) satisfies the PAC learning condition.

9

Formally, we analyze the following generic algorithm for learning any class C of VC-dimension d,
whose inputs are a certainty parameter δ > 0, the nasty error rate parameter η < 1

2 and the required
accuracy ε = 2η + ∆:

Algorithm NastyConsistent:

1. Request a sample S = {(x, bx)} of size

m ≥ c

∆2

(
d + log

2
δ

)

2. Output any h ∈ C such that

|{x ∈ S : h(x) 6= bx}| ≤ m

(
η +

∆
4

)

(if no such h exists, choose any h ∈ C arbitrarily).

Theorem 7: Let C be any class of VC-dimension d. Then, (for some constant c) algorithm Nasty-
Consistent is a PAC learning algorithm under nasty sample noise of rate η.

In our proof of this theorem (as well as in the analysis of the algorithm in the next section), we
use, for convenience, a slightly weaker definition of PAC learnability than the one used in Definition
1. We require the algorithm to output, with probability at least 1− δ, a function h for which:

Pr
D

[ct(x) 6= h(x)] ≤ ε

(rather than a strict inequality). However, if we use the same algorithm but give it a slightly smaller
accuracy parameter (e.g., ε′ = 2η + ∆/2 < ε), we will get an algorithm that learns using the original
criterion of Definition 1.

Proof: First, we argue that with “high probability” the number of sample points that are modified
by the adversary is at most m(η + ∆/4). As the random variable E is distributed according to the
binomial distribution with expectation ηm, we may use Hoeffding’s inequality [14] to get:

Pr
[
E >

(
η +

∆
4

)
m

]
≤ exp

(
−2m∆2

16

)
.

Since m ≥ 8
∆2 ln 2

δ (by the choice of c), this event happens with probability at most δ/2.
Now, we note that the target function ct errs on at most E points of the sample shown to

the learning algorithm (as it is completely accurate on the non-modified sample Sg). Thus, with
probability at least 1− δ/2, Algorithm NastyConsistent will be able to choose a function h ∈ C that
errs on no more that (η +∆/4)m points of the sample shown to it. However, in the worst case, these
errors of the function h occur in points that were not modified by the adversary. In addition, h may
be erroneous for all the points that the adversary did modify. Therefore, all we are guaranteed in this
case, is that the hypothesis h errs on no more that 2(η +∆/4)m points of the original sample Sg. By
Theorem 2, there exists a constant c such that, with probability 1− δ/2, by taking Sg to be of size
at least c

∆2

(
d + log 2

δ

)
the resulting sample Sg is a ∆

2 -sample for the class of symmetric differences
between functions from C and the target {h4ct : h ∈ C}. By the union bound we therefore have

10

that, with probability at least 1− δ, E ≤ (η + ∆/4)m, meaning that |Sg ∩ (ct4h)| ≤ (2η + ∆/2)m,
and that Sg is a ∆/2-sample for the class of symmetric differences, and so:

Pr
D

[(ct4h)] ≤ 2η + ∆ = ε

as required.

5 Composition Theorem for Learning with Nasty Noise

Following [3] and [8], we define the notion of “composition class”: Let C be a class of boolean
functions g : X 7→ {0, 1}n. Define the class C? to be the set of all boolean functions F (x) that can
be represented as f(g1(x), . . . , gk(x)) where f is any boolean function, and gi ∈ C for i = 1, . . . , k.
We define the size of f(g1, . . . , gk) to be k. Given a vector of hypotheses (h1, . . . , ht) ∈ Ht we define,
following [8], the set W(h1, . . . , ht) to be the set of sub-domains Wa = {x|(h1(x), . . . , ht(x)) = a} for
all possible vectors a ∈ {0, 1}t.

The remainder of this section presents a learning algorithm that can learn composition classes
even when the training sample suffers from nasty noise. Section 5.1 describes results of [8] relating to
consistency algorithms that we use in the construction of our learning algorithm. Our new algorithm
and its analysis are presented in Section 5.2.

5.1 Consistency Algorithms

Let P and N be subsets of points from X . We say that a function h : X 7→ {0, 1} is consistent on
(P,N) if h(x) = 1 for every “positive point” x ∈ P and h(x) = 0 for every “negative point” x ∈ N .
A consistency algorithm (see [8]) for a pair of classes (C,H) (both over the same instance space X ,
with C ⊆ H), receives as input two subsets of the instance space, (P, N), runs in time polynomial
in |P ∪N |, and satisfies the following. If there is a function in C that is consistent with (P, N), the
algorithm outputs “YES” and some h ∈ H that is consistent with (P, N); the algorithm outputs
“NO” if no consistent h ∈ H exist (there is no restriction on the output in the case that there is a
consistent function in H but not in C).

Given a subset of points of the instance space Q ⊆ X , we will be interested in the set of all
possible partitions of Q into positive and negative examples, such that there is a function h ∈ H
and a function c ∈ C that are both consistent with this partition. This may be formulated as:
SCON(Q) = {P | CON(P, Q \ P) = “YES”} where CON is a consistency algorithm for (C,H).
The following is based on Sauer’s Lemma [19]:

Lemma 1: For any set of points Q,

|SCON(Q)| ≤ |Q|VC-dim(H) .

Bshouty [8] describes how to construct an efficient algorithm for generating this set of partitions
(along with the corresponding functions h ∈ H), assuming that C is PAC-learnable from H of
constant VC dimension. The algorithm’s output is denoted

ŜCON(Q)
4
= {((P, Q \ P), h) | P ∈ SCON(Q) and h is consistent with (P, Q \ P)} .

11

5.2 An Efficient Algorithm for Learning with Nasty Noise

We now show a variation of the algorithm presented in [8] that can learn the class C? with a nasty
sample adversary, assuming that the class C is PAC-learnable from a classH of constant VC dimension
d. Our algorithm builds on the fact that a consistency algorithm CON for (C,H) can be constructed,
given an algorithm that PAC learns C from H [8]. This algorithm can learn the concept class C? with
any confidence parameter δ and with accuracy ε that is arbitrarily close to the lower bound of 2η.
Its sample complexity and computational complexity are both polynomial in the size of the target,
1/δ and 1/∆, where ∆ = ε− 2η.

Our algorithm is based on the following idea: Request a large sample from the oracle. Randomly
pick a smaller sub-sample from the sample retrieved. By randomly picking this sub-sample, the
algorithm neutralize some of the power the adversary has, since the adversary cannot know which
examples are the ones that will be most “informative” for us. Then use the consistency algorithm
for (C,H) to find one representative from H for any possible behavior on the smaller sub-sample.
These hypotheses from H now define a division of the instance space into “cells”, where each cell
is characterized by a specific behavior of all the hypotheses picked. The final hypotheses is simply
based on taking a majority vote among the complete sample inside each such cell.

To demonstrate the algorithm, let us consider (informally) the specific, relatively simple, case
where the class to be learned is the class of k intervals3 on the straight line (see Figure 1). The
algorithm, given a sample as input, proceeds as follows:

1. The algorithm uses a relatively small, random sub-sample to divide the line into sub-intervals.
Each two adjacent points in the sub-sample define such a sub-interval.

2. For each such sub-interval the algorithm calculates a majority vote on the complete sample.
The result is our hypothesis.

The number of points (which in this specific case is the number of sub-intervals) that the algorithm
chooses in the first step depends on k. Intuitively, we want the total weight of the sub-intervals
containing the target’s end-points to be relatively small (this is what is called the “bad part” in the
formal analysis that follows). Naturally, there will be 2k such “bad” sub-intervals, so the larger k
is, the larger the sub-sample needed. Except for these “bad” sub-intervals, all other subintervals on
which the algorithm errs have to have at least half of their points modified by the adversary. Thus
the total error will be roughly 2η, plus the weight of the “bad” sub-intervals.

Now, we proceed to a formal description of the learning algorithm. Given the constant d, the size
k of the target function, the bound on the error rate η, the parameters δ and ∆, and two additional
parameters M, N (to be specified below), the algorithm proceeds as follows:

Algorithm NastyLearn:

1. Request a sample S of size N .

2. Choose uniformly at random a sub-sample R ⊆ S of size M .

3. Use the consistency algorithm for (C,H) to compute

ŜCON(R) = {((P1, R \ P1), h1), . . . , ((Pt, R \ Pt), ht)} .

3For simplicity, we consider the case where the concept class is of intervals that are semi-open, i.e. intervals of the
form [a, b). The use of other types of intervals would have required that we handle the boundary points between them
separately.

12

Target Concept:

(Errornous) Sample points:

Sub-sample and intervals:

"Bad" "Bad" "Bad" "Bad"

Algorithm’s hypothesis:

Figure 1: Example of NastyLearn for intervals.

4. Output the hypotheses H(h1, . . . , ht), computed as follows: For all Wa ∈ W(h1, . . . , ht) such
that S ∩Wa is not empty, set H(x) to be the majority of labels in S ∩Wa, for all x ∈ Wa. If
S ∩Wa = ∅, set H to be 0 on any x ∈ Wa.

Theorem 8: Let

M = max
(

24k

∆
log

8
δ
,
c2dk

∆
log

78k

∆

)

N =
M c1d2d

k2

∆2

(
2dd + log

4
δ

)

where c1 and c2 are constants. Then, Algorithm NastyLearn learns the class C? with accuracy
ε = 2η + ∆ and confidence δ in time polynomial in k, 1

δ , and 1
∆ .

As in Theorem 7, this Theorem refers to the modified PAC criterion that require the algorithm
to output, with probability at least 1− δ, a function h for which:

Pr
D

[ct(x) 6= h(x)] ≤ ε.

The same technique we mentioned for Algorithm NastyConsistent may be used to modify this algo-
rithm to be a PAC learning algorithm in the sense of Definition 1.

Before commencing with the actual proof, we present a technical lemma:

Lemma 2: Assuming N is set as in the statement of Theorem 8, with probability at least 1− δ
4 the

number of points in which errors are introduced, E, is at most (η + ∆/12)N .

Proof of Lemma 2: Note that, by the definition of the model, E is distributed according to a
binomial distribution with parameters η and N . Thus, E behaves as the number of successes in
N independent Bernoulli experiments, and the Hoeffding inequality [14] may be used to bound its
value:

Pr
[
E > (η +

∆
12

)N
]
≤ exp

(
−2N∆2

144

)
.

Therefore, if we take N > 72
∆2 ln(4/δ) we have, with probability at least 1 − δ

4 , that E is at most
(η + ∆/12)N . Note that the value we have chosen for N in the statement of Theorem 8 is clearly
large enough.

We are now ready to present the proof of Theorem 8:
Proof: To analyze the error made by the hypothesis that the algorithm generates, let us denote
the adversary’s strategy as follows:

13

1. Generate a sample of the requested size N according to the distribution D, and label it by the
target concept F . Denote this sample by Sg.

2. Choose a subset Sout ⊆ Sg of size E = E(Sg), where E(Sg) is a random variable (as defined in
Section 2.2).

3. Choose (maliciously) some other set of points Sin ⊆ X × {0, 1} of size E.

4. Hand to the learning algorithm the sample S = (Sg \ Sout) ∪ Sin.

Assume the target function F is of the form F = f(g1, . . . , gk). For all i ∈ {1, . . . , k}, denote by
hji , where ji ∈ {1, . . . , t}, the hypothesis chosen in step 3 of the algorithm that exhibits the same
behavior gi has over the points of R (from the definition of ŜCON we are guaranteed that such a
hypothesis exists). By definition, there are no points from R in hji4gi, so:

R ∩ (hji4gi) = ∅. (4)

As the VC-dimension of both the class C of all gi’s and the class H of all hi’s is d, the class of
all their possible symmetric differences also has VC-dimension O(d) (see Section 2.3). By applying
Theorem 1, when viewing R as a sample taken from S according to the uniform distribution, and
by choosing M to be as in the statement of the theorem, R will be an α-net (with respect to the
uniform distribution over S) for the class of symmetric differences, with α = ∆/6k, with probability
at least 1 − δ/4. Note that there may still be points in S which are in hji4gi. Hence, we let
S(i) = S ∩ (hji4gi). Now, by using (4) we get:

∣∣∣S(i)
∣∣∣

|S| ≤ ∆
6k

(5)

with probability at least 1− δ/4, simultaneously for all i.
For every sub-domain B ∈ W(h1, . . . , ht) we define:

NB
4
= |Sg ∩B|

N in
B

4
= |Sin ∩B|

Nout,g
B

4
=

∣∣∣∣∣Sout ∩B ∩
⋃

i

(hji4gi)

∣∣∣∣∣

Nout,b
B

4
=

∣∣∣∣∣Sout ∩B ∩
⋃

i

(hji4gi)

∣∣∣∣∣

Nα
B

4
=

∣∣∣∣∣S ∩B ∩
⋃

i

(hji4gi)

∣∣∣∣∣

In words, NB and N in
B simply stand for the size of the restriction of the original (noise-free) sample

Sg and the noisy examples Sin introduced by the adversary to the sub-domain B. As for the rest
of the definitions, they are based on the distinction between the “good” part of B, where the gis
and the hjis behave the same, and the “bad” part, which is present due to the fact that the gis and
the hjis exhibit the same behavior only on the smaller sub-sample R, rather than on the complete
sample S. Note that the target function is constant on the good part of every sub-domain B. We

14

use Nα
B to denote the number of sample points in the bad part of B, and Nout,g

B and Nout,b
B to denote

the number of sample points that were removed by the adversary from the good and bad parts of
B, respectively.

Since our learning algorithm decides on the classification in each sub-domain by a majority vote,
the hypothesis will err on the domain B ∩ (

⋃
i(hji4gi)) (the “good” part of B) if the number of

examples left untouched in the good part of B is less than the number of examples in B that
were modified by the adversary, plus those that were misclassified by the hjis (with respect to the
gis). This may be formulated as the following condition: N in

B + Nα
B ≥ NB − Nout,g

B − Nα
B, or:

NB ≤ N in
B + Nout,g

B + 2Nα
B. Therefore, the total error the algorithm may experience is at most:

D

[⋃

i

hji4gi

]
+

∑

B: NB≤N in
B +N

out,g
B +2Nα

B

D(B).

We now calculate a bound for each of the two terms above separately. To bound the second term,
note that by Theorem 2 our choice of N guarantees Sg to be a ∆

6|W(h1,...,ht)| -sample for our domain
with probability at least 1− δ/4. Note that from the definition of W(h1, . . . , ht) and from the Sauer
Lemma [19] (applied to the dual class H⊥) we have that |W(h1, . . . , ht)| ≤ tVCdim(H⊥), which, with
Claim 1 and Lemma 1 yields:

|W(h1, . . . , ht)| ≤ MVCdim(H)VCdim(H⊥) ≤ Md2d

Our choice of N indeed guarantees, with probability at least 1− δ/4 that:
∑

B: NB≤N in
B +N

out,g
B +2Nα

B

D(B) ≤
∑

B: NB≤N in
B +N

out,g
B +2Nα

B

(
NB

N
+

∆
6 |W(h1, . . . , ht)|

)

≤ ∆
6

+
∑

B∈W(h1,...,ht)

N in
B + Nout,g

B + 2Nα
B

N

From the above choice of N , it follows that Sg is also a ∆
6k -sample for the class of symmetric

differences of the form hji4gi, with probability at least 1 − δ/4. Furthermore, this implies that Sg

is a ∆
6 -sample for the class of unions of k such symmetric differences (see, e.g., [4]), with probabilit

at least 1− δ/4. Thus, with probability at least 1− δ/2, we have:

D

(⋃

i

(hji4gi)

)
≤ |Sg ∩ (

⋃
i(hji4gi))|
|Sg|

≤ ∆
6

+
|(S ∪ Sout) ∩

⋃
i(hji4gi)|

|S| (Because Sg is a ∆
6 sample)

≤ ∆
6

+
∆
6

+
|Sout ∩

⋃
i(hji4gi)|
|S| (Because (5) holds, w.h.p.)

≤ 2∆
6

+
∑

B∈W(h1,...,ht)

Nout,b
B

N

The total error made by the hypothesis (assuming that none of the four bad events happen) is
therefore bounded by:

Pr
D

[H4F] ≤ 3∆
6

+
∑

B∈W(h1,...,ht)

N in
B + Nout,g

B + Nout,b
B + 2Nα

B

N

15

≤ 5∆
6

+
|Sout|

N
+
|Sin|
N

(From (5),
∑

Nα
B ≤ N/6)

= 2
E

N
+

5∆
6

≤ 2η + ∆ = ε (Using Lemma 2.)

as required. This bound holds with certainty at least 1− δ.

6 Conclusion

We have presented the model of PAC learning with nasty noise, generalizing on previous models. We
have proved a negative information-theoretic result, showing that there is no learning algorithm that
can learn any non-trivial class with accuracy better than 2η, paired with a positive result showing this
bound to be tight. We complemented these results with lower bounds on the sample size required for
learning with accuracy 2η + ∆. We have also shown that for a wide variety of “interesting” concept
classes, an efficient learning algorithm in this model exists. Our negative result can be generalized
for the case where the learning algorithm uses randomized hypotheses, or coin rules (as defined in
[10]); in such a case we get an information theoretic lower bound of η for the achievable accuracy,
compared to a lower bound of η/2(1 + η) proved in [10] for learning with Malicious Noise of rate η.

While the partition into two separate variants: the NSN and the NCN models seem intuitive and
well-motivated, it remains an open problem to come up with any results that actually separate the
two models. Both the negative and positive results we presented in this work apply equally to both
the NSN and the NCN models.

Finally, note that the definition of the nasty noise model requires the learning algorithm to know
in advance the sample size m (or an upper bound on it). The model however can be extended so as
to deal with scenarios where no such bound is known to the learning algorithm. There are several
scenarios of this kind. For example, the sample complexity may depend on certain parameters (such
as the “size” of the target function) which are not known to the algorithm4. The adversary, who knows
the learning algorithm and knows the target function (and in general can know all the parameters
hidden from the learning algorithm) can thus “plan ahead” and draw in advance a sample Sg of size
which is sufficiently large to satisfy, with high probability, all the requests the learning algorithm will
make. It then modifies Sg as defined above and reorders the resulted sample S randomly5. Now, the
learning algorithm simply asks for one example at a time (as in the PAC model) and the adversary
supplies the next example in its (randomly-ordered) set S. If the sample is exhausted (which may
happen in those cases where we have only an expected sample-complexity guarantee), we say that
the learning algorithm has failed; however, when using a large enough sample (with respect to 1/δ),
this will happen with sufficiently small probability.

References

[1] J. A. Aslam and S. E. Decatur, “General Bounds on Statistical Query Learning and PAC Learning with
Noise via Hypothesis Boosting”, FOCS93, pp. 282-291, 1993.

4Other examples include scenarios where the learning algorithm only guarantees a bound on the expected sample
complexity (either because the algorithm is randomized or because the number of examples used depends on the
previous examples).

5The sample must be reordered randomly, so that the adversary cannot introduce an effective error rate much
greater than η in case the learning algorithm does not ask for all the examples drawn.

16

[2] D. Angluin and P. Laird, “Learning from Noisy Examples”, Machine Learning, Vol. 2, pp. 343–370, 1988.

[3] S. Ben-David, N. H. Bshouty and E. Kushilevitz, “A Composition Theorem for Learning Algorithms with
Applications to Geometric Concept Classes”, STOC97, pp. 324–333, 1997.

[4] S. Ben-David and A. Litman, “Combinatorial Variability of Vapnik–Chervonenkis Classes with Applica-
tions to Sample Compression Schemes”, Discrete Applied Math 86, pp. 3–25, 1998.

[5] A. Blum, P. Chalasani, S. A. Goldman, and D. K. Slonim, “Learning with Unreliable Boundary Queries”,
COLT95, pp. 98–107, 1995.

[6] A. Blum, M. Furst, J. Jackson, M. J. Kearns, Y. Mansour, and S. Rudich, “Weakly Learning DNF and
Characterizing Statistical Query Learning Using Fourier Analysis”, STOC94, 1994.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, “Learnability and the Vapnik-Chervonenkis
dimension”, J. of the ACM, 36(4), pp. 929–965, 1989.

[8] N. H. Bshouty, “A New Composition Theorem for Learning Algorithms”, STOC98, pp. 583–589, 1998.

[9] N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki, “Noise-Tolerant Distribution-Free
Learning of General Geometric Concepts”, STOC96, pp. 151–160, 1996.

[10] N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir and H. U. Simon, “Sample-efficient strategies for
learning in the presence of noise”, J. of the ACM, 46(5), pp. 684–719, 1999.

[11] S. E. Decatur, “Learning in Hybrid Noise Environments Using Statistical Queries”, in Learning from
Data: Artificial Intelligence and Statistics V, D. Fisher and H. J. Lenz, (Eds.), 1996.

[12] S. E. Decatur, “PAC Learning with Constant-Partition Classification Noise and Applications to Decision
Tree Induction”, Proceedings of the Sixth International Workshop on Artificial Intelligence and Statistics,
pp. 147–156, 1997.

[13] S. E. Decatur and R. Gennaro, “On Learning from Noisy and Incomplete Examples”, COLT95, pp.
353–360, 1995.

[14] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables”, J. of the American
Statistical Association, 58(301), pp. 13–30, 1963.

[15] K. Jogdeo and S. M. Samuels, “Monotone Convergence of Binomial Probabilities and a Generalization of
Ramanujan’s Equation”. The Annals of Mathematical Statistics, 39(4):1191–1195, 1968.

[16] M. Kearns, “Efficient Noise-Tolerant Learning from Statistical Queries”, Proc. 25th ACM Symposium on
the Theory of Computing, pp. 392–401, 1993.

[17] M. J. Kearns and M. Li, “Learning in the Presence of Malicious Errors”, SIAM J. on Computing, 22:807-
837, 1993.

[18] M. J. Kearns, R. E. Schapire, and L. M. Sellie, “Toward Efficient Agnostic Learning”, Machine Learning,
vol. 17(2), pp. 115–142, 1994.

[19] N. Sauer, “On the Density of Families of sets”, Journal of Combinatorial Theory, 13:145–147, 1972.

[20] R. E. Schapire, “The Design and Analysis of Efficient Learning Algorithms”, MIT Press, 1991.

[21] M. Talagrand, “Sharper Bounds for Gaussian and Empirical Processes”, Annals of Probability, 22:28–76,
1994.

[22] L. G. Valiant, “A Theory of the Learnable”, Comm. ACM, 27(11):1134-1142, 1984.

[23] L. G. Valiant, “Learning Disjunctions of Conjunctions”, IJCAI85, pp. 560–566, 1985.

[24] V. N. Vapnik and A. Y. Chervonenkis, “On the Uniform Convergence of Relative Frequencies of Events
to Their Probabilities”, Theory Probab. Appl. 16, no. 2 pp. 264–280, 1971.

17

