
Static Score Bucketing in Inverted Indexes

Chavdar Botev
Cornell University
4130 Upson Hall
Ithaca, NY, USA

cbotev@cs.cornell.edu

Nadav Eiron, Marcus Fontoura, Ning Li,
Eugene Shekita

IBM Almaden Research Center
650 Harry Rd

San Jose, CA, USA

trevi@almaden.ibm.com

ABSTRACT
Maintaining strict static score order of inverted lists is a
heuristic used by search engines to improve the quality of
query results when the entire inverted lists cannot be pro-
cessed. This heuristic, however, increases the cost of index
generation and requires complex index build algorithms. In
this paper, we study a new index organization based on
static score bucketing. We show that this new technique sig-
nificantly improves in index build performance while having
minimal impact on the quality of search results.

Categories and Subject Descriptors H.3[Information
Systems]: Information Storage and Retrieval; E.1[Data]:
Data Structures

General Terms: Algorithms, Performance

Keywords: Indexing, Search engines, Static scoring

1. INDEXING WITH STATIC SCORE
BUCKETING

In previous work, Long and Suel [6] have proposed an in-
verted lists organization that is based on a static rank order
of the postings. Such an organization improves the result
quality when the entire index cannot be scanned. However,
it degrades index build performance and increases the com-
plexity of index build algorithms [3]. This issue stems from
the fact that a change in the score of a single document may
translate to many updates to postings lists.

In this work, we propose relaxing the total static score
order to a partial order. The partial order groups postings
with similar static scores into buckets. Thus, we only need
to maintain order across buckets and we allow the docu-
ment order inside of a bucket to be arbitrary. For example,
postings inside a bucket can be stored in an increasing do-
cid (document identifier) order, which need not be the same
as the static score order. This allows for an efficient query
evaluation, since posting lists can be joined, and for efficient
indexing algorithms, since a full sort on the static scores
can be avoided. Although this approach can lead to slight
degradation in the quality of the returned results, we experi-

Copyright is held by the author/owner.
CIKM’05, October 31–November 5, 2005, Bremen, Germany.
ACM 1-59593-140-6/05/0010.

mentally show that the degradation in quality is controllable
and can be made negligible.

2. INDEXING ALGORITHM
Our indexing algorithm is based on a re-merge index-

update strategy, which Lester et al. [5] found to have good
performance. In the re-merge strategy, new documents are
added to a delta index, which can be an in-memory index.
When the delta index gets to a certain size it is merged with
the main index to produce the a new main index and the
delta index is reset. The challenge is that using static rank
to dictate inverted list order presents problems when merg-
ing indexes, especially when the docid order is the same as
the static score order [3]. Since docids need to be changed
to reflect new static scores, a full sort of the output posting
lists is required to reflect the new scores in new main index.
For instance, when a single document with a high score is
added to the system, most of the docids become invalid.

We now present the re-merge algorithm based on static
score bucketing. The algorithm has a time complexity that
is linear in the combined size of the main and delta indexes.
Our algorithm uses the following in-memory structures: (i)
remList : the list of documents that need to be removed,
and (ii) changeTable: a mapping from the docid of docu-
ments that changed their bucket to their new bucket num-
ber. These structures can be readily stored in memory.

Function IndexMerge

1 for each Term t {
2 bucketPages = new Page[numberOfbuckets];

3 main[] = mainIndex.getPostings(t);

4 delta[] = deltaIndex.getPostings(t);

5 while (exists main[] and exists delta[]) {
6 curDocid = min docid from main[] and delta[];

7 if (remList.contains(curDocid)) continue;

8 if (changeTable.contains(curDocid))

9 curBucket = changeTable.lookup(curDocid);

10 else curBucket = current bucket for curDocid;

11 addToBucket(curBucket, curDocid, bucketPages);

12 } //end while (main merge loop);

13 } //end for

The algorithm merges, for each term t, the corresponding
postings lists from the delta and the main indexes: delta[]
and main[] arrays respectively. The size of these arrays is
the number of buckets and delta[] and main[] contain one
posting list per bucket for the given term t. These posting
lists are sorted by docid. Each iteration of the main loop
processes the posting with the minimum docid (line 6). If its

311



document has been deleted, that posting entry is not added
to the merged index (line 7). The output postings are parti-
tioned into several output streams (the bucketPages array)
based on the static score bucket of the posting document.
These output stream are represented by buffer pages, which
are flushed to disk whenever the they fill up. If the docu-
ment in question is in the changeTable, it is redirected to the
output stream corresponding to the new static score bucket
(line 8). Otherwise, it remains on the output stream that
corresponds to its old bucket (line 11).

3. EXPERIMENTAL RESULTS
We performed two main sets of experiments. The first set

tested the index build performance. The second set of exper-
iments tested the change in quality of the results when using
inverted lists bucketing. For both sets of experiments, re-
sults were compared to the baseline system with documents
completely ordered by their static scores.

Experimental setup. Our scheme introduces several
tunable parameters that potentially influence performance.
The bucket type parameter specifies the function used for
bucketing. We follow Haveliwala [4] who describes static
score quantization methods in the related problem of find-
ing efficient encodings of static scores. For our experiments,
we used the following non-linear quantizations: logarith-
mic G(x) ∝ logx, square root G(x) ∝

p
(x), exponential

G(x) ∝ xb and equi-depth where each bucket contains ap-
proximately the same number of documents. We also experi-
mented with an additional bucketing scheme, which we refer
to as adaptive. It groups documents so that the maximum
difference of the static scores within a bucket does not exceed
a fixed value. A second parameter that we tested is the num-
ber of buckets per inverted list. Finally, we experimented
with two types of static score methods: in-degree (the num-
ber of hosts referring to the document) [3] and PageRank (a
measure of the popularity based on the random walk model
[1]).

We performed our experiments with a real-world query
load from the IBM intranet: a sample of 277 unique queries
out of 116,313 total queries. All the experiments were exe-
cuted using the Trevi intranet search engine [3].

Experiments on indexing performance. For these
experiments, we implemented the index re-merge algorithm
described in Section 2. We compared the proposed algo-
rithm with a re-merge algorithm based on strict static score
ordering. We built an index with four buckets using all the
bucket types previously described. The results for all the
bucketing methods we tested were similar.

We fixed a main index for 500K documents and varied
the delta index size, from 64,000 documents to 128,000 doc-
uments. The results indicated that using static score buck-
eting we can achieve more than 20% increase in index build
performance to an already highly-optimized indexing algo-
rithm. Furthermore, the results are independent of the size
of the delta index being merged. Thus, a search engine us-
ing static score bucketing can have an increased indexing
throughput. Therefore, the search engine can update its in-
dex more frequently, resulting in more up-to-date content
provided to the users.

Experiments on query-results quality. These experi-
ments illustrate how the query results change when we apply
static score bucketing to the inverted lists. We tested how
the number of inversion between the result rankings (the

Figure 1: Static score = in-degree, Number of buck-
ets = 64

Kendal Tau similarity measure [2]) varies with the number
of scanned documents. The ground truth for our experi-
ments were the results returned by the search engine using
its standard total ordering of t he inverted lists based on the
static score, and scanning the entire inverted lists (i.e. no
“early-termination”).

Figure 1 presents the experiments using in-degree static
score and 64 buckets. The experiment compares the differ-
ent bucketing types when the number of scanned postings
increases. As a reference, we have also included the results
with early termination when no bucketing is applied (the
“no-buckets” series).

As it can be expected, the difference to the ground truth
quickly decreases when the engine scans larger potions. The
comparison to the reference “no-buckets” series shows that
most of this difference can be attributed to the early ter-
mination and not to the bucketing type. Furthermore, the
figure shows that the differences between the various bucket-
ing types are small. Experiments with larger values for the
number of documents scanned (not presented due to lack
of space) show that the differences get even smaller when
larger potions of the posting lists are scanned.

The experiments with PageRank show similar trends and
we do not present them due to lack of space. The differences
between the tested bucketing schemes were even smaller due
to the higher precision of the PageRank scores, which allows
better clustering of the postings into buckets.

4. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale hypertextual

(web) search engine. Computer Networks and ISDN Systems,
30(1–7):107–117, 1998.

[2] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists.
SIAM Journal on Discrete Mathematics, 17(1):134–160, 2003.

[3] M. Fontoura, A. Neumann, S. Rajagopalan, E. Shekita, and
J. Zien. High performance index build algorithms for intranet
search engines. In VLDB’ 2004.

[4] T. Haveliwala. Efficient encoding for document ranking vectors.
In Proc. of 4th Int. Conference on Internet Computing, 2003.

[5] N. Lester, J. Zobel, and H. E. Williams. In-place versus re-build
versus re-merge: index maintenance strategies for text retrieval
systems. In CRPIT ’2004.

[6] X.Long and T. Suel. Optimized query execution in large search
engines with global page ordering. In Proc. of the 29th Int.
Conf. on Very Large Databases, 2003.

312


